Self-ordering of the cell arrangement of the anodic porous alumina was prepared in oxalic acid solution at a constant potential of 40V and at a temperature of 20C. The honeycomb structure made by one step anodization...Self-ordering of the cell arrangement of the anodic porous alumina was prepared in oxalic acid solution at a constant potential of 40V and at a temperature of 20C. The honeycomb structure made by one step anodization method and two step anodization method is different. Pores in the alumina film prepared by two step anodization method were more ordered than those by one step anodization method.展开更多
The microstructure and corrosion resistance of different boric/sulfuric acid anodic(BSAA) films on 7050 aluminum alloy were studied by atomic force microscopy(AFM),electrochemical impedance spectroscopy(EIS) and...The microstructure and corrosion resistance of different boric/sulfuric acid anodic(BSAA) films on 7050 aluminum alloy were studied by atomic force microscopy(AFM),electrochemical impedance spectroscopy(EIS) and scanning Kelvin probe(SKP).The results show that boric acid does not change the structure of barrier layer of anodic film,but will significantly affect the structure of porous layer,consequently affect the corrosion resistance of anodic film.As the content of boric acid in electrolyte increases from 0 to 8 g/L,the resistance of porous layer(Rp) of BSAA film increases,the capacitance of porous layer(CPEp) decreases,the surface potential moves positively,the pore size lessens,and the corrosion resistance improves.However,the Rp,CPEp and surface potential will change towards opposite direction when the content of boric acid is over 8 g/L.展开更多
The influence of adipic acid on the formation and corrosion resistance of anodic oxide film fabricated on 2024 aluminum alloy was investigated. The morphology was investigated by scanning electron microscopy (SEM) a...The influence of adipic acid on the formation and corrosion resistance of anodic oxide film fabricated on 2024 aluminum alloy was investigated. The morphology was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. The corrosion resistance was evaluated by electrochemical impedance spectroscopy (EIS). The results showed that the adipic acid was absorbed at the electrolyte/anodic layer interface during anodizing. The corrosion rate of anodic film decreased and the film thickness increased. The film was uniform and compact especially at the film/substrate interface. After sealing procedure, anodic film formed with the addition of adipic acid exhibited improved dielectric property and corrosion resistance in aggressive environment.展开更多
Aluminum capacitor foils with a tunnel etch structure were reacted with boiling water and then anodized at 530 V in boric acid solution or boric acid+citric acid mixed solution.The microstructure and crystallinity of...Aluminum capacitor foils with a tunnel etch structure were reacted with boiling water and then anodized at 530 V in boric acid solution or boric acid+citric acid mixed solution.The microstructure and crystallinity of the resulting anodized film were examined by TEM and XRD.The special capacitance,resistance and withstanding voltage of the film were explored with electrochemical impedance spectroscopy(EIS),LCR meter and small-current charging.The results show that the high voltage anodized oxide film consists of an inner layer with high crystallinity and an outer layer with low crystallinity.However,the crystallinity of the film formed in boric acid+citric acid mixed solution is higher than that of the film formed in only boric acid solution,leading to an increase in film's field strength and special capacitance.Meanwhile,there are more defects from phase transformation in the out layer of the film formed in boric acid+citric acid mixed solution than in that of film formed in only boric acid solution,leading to a decrease in film's resistance and withstanding voltage.展开更多
The leaching kinetics of selenium from copper anode slimes was studied in a nitric acid?sulfuric acid mixture.The effects of main parameters on selenium leaching showed that the leaching rate of selenium was practical...The leaching kinetics of selenium from copper anode slimes was studied in a nitric acid?sulfuric acid mixture.The effects of main parameters on selenium leaching showed that the leaching rate of selenium was practically independent of stirring speed,while dependent on temperature and the concentrations of HNO3and H2SO4.The leaching of selenium includes two stages.The activation energy in the first stage is103.5kJ/mol,and the chemical reaction is the rate controlling step.It was almost independent of H2SO4concentration and dependent on HNO3concentration since the empirical reaction order with respect to HNO3concentration is0.5613.In the second stage,the activation energy is30.6kJ/mol,and the process is controlled by a mixture of diffusion and chemical reaction.The leaching of selenium was almost independent of HNO3concentration.展开更多
Service life of two different oxide anodes in phenolsulfonic acid (PSA) solution was investigated by accelerated electrolysis. The durability of Ti/IrO_2+Ta_2 O_5 anode increased by the addition of SnO_2 in the mixed...Service life of two different oxide anodes in phenolsulfonic acid (PSA) solution was investigated by accelerated electrolysis. The durability of Ti/IrO_2+Ta_2 O_5 anode increased by the addition of SnO_2 in the mixed oxides. The degradation mechanisms of Ti/IrO_2+ Ta_2 O_5 and Ti/IrO_2 +Ta_2 O_5 +SnO+2 anodes were different. It was shown from the observation of scanning electron microscopy (SEM) and the electrochcmical measurement that, the deactivation of Ti/IrO_2 + Ta_2 O_5 anode was due to the build-up of an organic film on surface. The growth of the covered film on surface was restricted by addition of SnO_2, which resulted in increasing of the service life of anodes. The over-potential for oxygen evolution on Ti/IrO_2 +Ta_2 O_5 electrode increased after doping SnO_2, and the intermediate products of PSA building-up on the surface was much more rapidly oxidized. Meanwhile, a certain part of the surface oxide deposit entered into the solution leading to loss of oxides, which resulted in degradation of Ti/IroO_2 + Ta_2 O_5 anode containing SnO_2 component.展开更多
Humic acid(HA)was studied as a modifier in the SnO_(2) anode preparation for the electrochemical performance improvement.Scanning electron microscopy,180°peel test,and nanoindentation experiment were used to exam...Humic acid(HA)was studied as a modifier in the SnO_(2) anode preparation for the electrochemical performance improvement.Scanning electron microscopy,180°peel test,and nanoindentation experiment were used to examine the influence of the HA on electrode.The results showed that the addition of HA could improve the dispersion uniformity of all particles.The components were tightened,increasing the difficulty of peeling off the film from the current collector.The deformation resistance of the electrode was greatly enhanced by the HA modification.The electrochemical test results showed that the anode from the normal micron-sized SnO_(2)particles with the HA modifier exhibited significant progress in electrochemical performance compared with those without HA.The reversible specific capacity of the SnO_(2) anode can be maintained as high as 733.4 mA·h/g at a current density of 100 mA/g after 50 cycles.Therefore,HA is a promising modifier for anode preparation of lithium-ion batteries.展开更多
The anodizing oxidation process on 2024 aluminum alloy was researched in the mixed electrolyte with the composition of 30 g/L boric acid, 2 g/L sulfosalicylic acid and 8 g/L phosphate. The results reveal that the pre-...The anodizing oxidation process on 2024 aluminum alloy was researched in the mixed electrolyte with the composition of 30 g/L boric acid, 2 g/L sulfosalicylic acid and 8 g/L phosphate. The results reveal that the pre-treatment and the composition of the mixed electrolyte have influence on the properties of the films and the anodizing oxidation process. Under the condition of controlled potential, the anodizing oxidation current—time response curve displays "saddle" shape. First, the current density reaches a peak value of 8-20 A/dm2 and then decreases rapidly, finally maintains at 1-2 A/dm2. The film prepared in the mixed electrolyte is of porous-type with 20 nm in pore size and 500 μm-2 in porosity. Compared with the conventional anodic film obtained in sulfuric acid, the pore wall of the porous layer prepared in this work is not continuous, which seems to be deposited by small spherical grains. This porous structure of the anodic film may result from the characteristics of the mixed electrolyte and the special anodizing oxidation process. The surface analysis displays that the anodic film is amorphous and composed of O, Al, C, P, S, Si and no copper element is detected.展开更多
In this paper, recovery of silver from anode slime of Sarcheshmeh copper complex in lran and subsequent synthesis of silver nanoparticles from leaching solution is investigated. Sarcheshmeh anode slime is mainly consi...In this paper, recovery of silver from anode slime of Sarcheshmeh copper complex in lran and subsequent synthesis of silver nanoparticles from leaching solution is investigated. Sarcheshmeh anode slime is mainly consisted ofCu, Ag, Pb and Se. Amount of Ag in the considered anode slime was 5.4% (by weight). The goal was to recover as much as possible Ag from anode slime at atmospheric pressure to synthesize Ag nanoparticles. Therefore, acid leaching was used for this purpose. The anode slime was leached with sulfuric and nitric acid from room to 90 ~C at different acid concentrations and the run which yielded the most recovery of Ag was selected for Ag nanoparticles synthesis. At this condition, Cu, Pb and Se are lea- ched as well as Ag. To separate Ag from leach solution HCI was added and silver was precipitated as AgCl which were then dissolved by ammonia solution. The Ag nanoparticles are synthesized from this solution by chemical reduction method by aid of sodium borohydride in the presence of PVP and PEG as stabilizers. The synthesized Ag nanoparticles showed a peak of 394 nm in UV-vis spectrum and TEM images showed a rather uniform Ag nanoparticles of 12 nm.展开更多
Black lead, Ti-Ru and Ti-PbO_2 were used as anode and stainless steel was used as cathode.The electrolytic process of producing hypophosphorous acid with four-compartment electrodia1yticcell was studied. The compariso...Black lead, Ti-Ru and Ti-PbO_2 were used as anode and stainless steel was used as cathode.The electrolytic process of producing hypophosphorous acid with four-compartment electrodia1yticcell was studied. The comparison of some factors, such as anodic voltage, product concentrationand current efficiency, of black lead, Ti-Ru, and Ti-PbO_2 electrodes was conducted. As a result, theTi-PbO_2 electrode is the optimal anode material used, it can be in electrolytic proccss for producinghypophosphorous acid.展开更多
The addition of phosphoric acid into sulfuric acid solution is mentioned to be helpful in the reduction of sulfation after deep discharge of lead-acid battery. The anodic behavior of Pb and Pb?In alloys was studied in...The addition of phosphoric acid into sulfuric acid solution is mentioned to be helpful in the reduction of sulfation after deep discharge of lead-acid battery. The anodic behavior of Pb and Pb?In alloys was studied in pure phosphoric acid and sulfuric acid containing various concentrations of phosphoric. The electrochemical measurements were performed using potentiodynamic, potentiostatic and cyclic voltammetric techniques. The composition and morphology of passive layer formed on the surfaces of Pb and Pb?In alloys were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy analysis (EDX) and scanning electron microscopy (SEM). The potentiodynamic study shows that the passive current density increases with increasing the indium content in the alloy in the examined solutions. The addition of 0.1 mol/L H3PO4 into theelectrolyte is more effective to decrease the thickness of passive film on the surface of alloys containing higher indium content (10% and 15%). The XRD, EDX and SEM data reveal that the formation of PbSO4 and PbO on the surface decreases with increasing the indium level in the alloy and is completely prevented at higher indium content (15%) in mixed acid.展开更多
Marine sediment microbial fuel cell(MSMFCs)can be utilized as a long lasting power source to drive small instruments to work for long time on ocean floor and its higher power has a significant meaning for practical ap...Marine sediment microbial fuel cell(MSMFCs)can be utilized as a long lasting power source to drive small instruments to work for long time on ocean floor and its higher power has a significant meaning for practical application.Anode modification can greatly improve the performance of MSMFCs.Herein,humic acid(HA)and humic acid-iron ion complex(HA-Fe)were used to modify the anode for constructing a better MSMFCs.The results indicated that HA-Fe modified anode,better than HA modification,significantly improved the MSMFCs cell power output.The maximum power density of HA-Fe modified MSMFCs is 165.3 mW m−2,which are 6.5-folds of blank MSMFCs.The number of microorganisms on anode,redox activity,and relative kinetic activity were 1.8-,6.1-,and 13.1-folds of blank MSMFCs,respectively.The MSMFCs improvement would be attributed to the electron transfer media of HA and the valence conversion of Fe ions.A synergistic interaction between the naturally occurring HA and Fe ions on the anodic surface in marine sediments would make the modified anodes have‘renewable’characteristics,which is beneficial for the MSMFCs to maintain its long-term higher power.展开更多
Boron-doped diamond (BDD) film electrodes using Ta as substrates were employed for anodic oxidation of salicylic acid (SA). The effects of operational variables including initial concentration, current density, te...Boron-doped diamond (BDD) film electrodes using Ta as substrates were employed for anodic oxidation of salicylic acid (SA). The effects of operational variables including initial concentration, current density, temperature and pH were examined. The results showed that BDD films deposited on the Ta substrates had high electrocatalytic activity for SA degradation. There was little effect ofpH on SA degradation. The current efficiency (CE) ,aas fbund to be dependent mainly on the initial SA concentration, current density and temperature. Chemical oxygen demand (COD) was reduced from 830 mg/L to 42 mg/L under a current density of200A/m^2 at 30℃.展开更多
The aim of this work was to investigate the effects of calcination/acid-activation on the composition, structure, and photocatalytic (PC) reduction property of an anodic oxidation TiO2/Ti film catalyst. The surface ...The aim of this work was to investigate the effects of calcination/acid-activation on the composition, structure, and photocatalytic (PC) reduction property of an anodic oxidation TiO2/Ti film catalyst. The surface morphology and phase composition were examined by scanning electron microscopy and X-ray diffraction. The catalytic property of the film catalysts was evaluated through the removal rate of potassium chromate during the PC reduction process. The results showed that the film catalysts were composed of anatase and rutile TiO2 with a micro-porous surface structure. The calcination treatment increased the content of TiO2 in the film, changed the relative ratio of anatase and rutile TiO2, and decreased the size of the micro pores of the film catalysts. The removal rate of potassium chromate was related to the technique parameters of calcination/acid-activation treatment. When the anodic oxidation TiO2/Ti film catalyst was calcined at 873 K for 30 min and then acid-activated in the concentrated H2SO4 for 60 min, it presented the highest catalytic property, with the removal rate of potassium chromate of 96.3% during the PC reduction process under the experimental conditions.展开更多
The design of advanced binders plays a critical role in stabilizing the cycling performance of large-volume-effect silicon monoxide(SiO)anodes.For the classic polyacrylic acid(PAA)binder,the self-association of-COOH g...The design of advanced binders plays a critical role in stabilizing the cycling performance of large-volume-effect silicon monoxide(SiO)anodes.For the classic polyacrylic acid(PAA)binder,the self-association of-COOH groups in PAA leads to the formation of intramolecular and intermolecular hydrogen bonds,greatly weakening the bonding force of the binder to SiO surface.However,strengthening the binder-material interaction from the perspective of binder molecular regulation poses a significant challenge.Herein,a modified PAA-Li_(x)(0.25≤x≤1)binder with prominent mechanical properties and adhesion strength is specifically synthesized for SiO anodes by quantitatively substituting the carboxylic hydrogen with lithium.The appropriate lithium substitution(x=0.25)not only effectively increases the number of hydrogen bonds between the PAA binder and SiO surface owing to charge repulsion effect between ions,but also guarantees moderate entanglement between PAA-Li_x molecular chains through the ion-dipole interaction.As such,the PAA-Li_(0.25)/SiO electrode exhibits exceptional mechanical properties and the lowest volume change,as well as the optimum cycling(1237.3 mA h g^(-1)after 100cycles at 0.1 C)and rate performance(1000.6 mA h g^(-1)at 1 C),significantly outperforming the electrode using pristine PAA binder.This work paves the way for quantitative regulation of binders at the molecular level.展开更多
Zinc-ion batteries are promising for large-scale electrochemical energy storage systems,which still suffer from interfacial issues,e.g.,hydrogen evolution side reaction(HER),self-corrosion,and uncontrollable dendritic...Zinc-ion batteries are promising for large-scale electrochemical energy storage systems,which still suffer from interfacial issues,e.g.,hydrogen evolution side reaction(HER),self-corrosion,and uncontrollable dendritic Zn electrodeposition.Although the regulation of electric double layer(EDL)has been verified for interfacial issues,the principle to select the additive as the regulator is still misted.Here,several typical amino acids with different characteristics were examined to reveal the interfacial behaviors in regulated EDL on the Zn anode.Negative charged acidic polarity(NCAP)has been unveiled as the guideline for selecting additive to reconstruct EDL with an inner zincophilic H_(2)O-poor layer and to replace H_(2)O molecules of hydrated Zn^(2+)with NCAP glutamate.Taking the synergistic effects of EDL regulation,the uncontrollable interface is significantly stabilized from the suppressed HER and anti-self-corrosion with uniform electrodeposition.Consequently,by adding NCAP glutamate,a high average Coulombic efficiency of 99.83%of Zn metal is achieved in Zn|Cu asymmetrical cell for over 2000 cycles,and NH4V4O10|Zn full cell exhibits a high-capacity retention of 82.1%after 3000 cycles at 2 A g^(-1).Recapitulating,the NCAP principle posted here can quicken the design of trailblazing electrolyte additives for aqueous Zn-based electrochemical energy storage systems.展开更多
A process using soda roasting-alkaline leaching-acid leaching to remove selenium, tellurium and copper sequentially from the copper anode slime with high content of Ni was tested. The mechanism of this process was out...A process using soda roasting-alkaline leaching-acid leaching to remove selenium, tellurium and copper sequentially from the copper anode slime with high content of Ni was tested. The mechanism of this process was outlined based on thermodynamic analysis and the change in the XRD patterns of different intermediate products. During soda roasting, copper which occurs as Cu4SeTe in the slime was oxidized to CuO and Cu3TeO6, while selenium and tellurium were oxidized to Ag2SeO4 and Cu3TeO6, respectively. Ag2SeO4 in the calcine is easily leached in the subsequent alkaline leaching, but CuTeO3 resulted from the decomposition of CCu3TeO6 remains inactive in this process through which selenium is leached out in preference to tellurium. The CuTeO3 and Cu O in the alkaline leaching residue can be leached in the following sulfuric acid leaching process. More than 97% of selenium was leached with little tellurium leached under the optimal condition. Then, more than 96% of copper and almost all the tellurium were leached out in the following acid leaching process.展开更多
A kind of environmental friendly anodizing routine for AZ91D magnesium alloy,based on an alkaline borate-potassium acid phthalate(KAP) electrolyte,was studied.The effect of KAP on the properties of the anodized film...A kind of environmental friendly anodizing routine for AZ91D magnesium alloy,based on an alkaline borate-potassium acid phthalate(KAP) electrolyte,was studied.The effect of KAP on the properties of the anodized film was investigated by scanning electron microscopy(SEM),X-ray diffraction(XRD),energy dispersive spectrometry(EDS),potentiodynamic polarization and electrochemical impedance spectroscopy(EIS),respectively.The results showed that the anodizing process,surface morphology,thickness,phase structure and corrosion resistance of the anodized film were strongly dependent on the concentration of KAP.In the presence of adequate KAP,a compact and smooth anodized film with excellent corrosion resistance was obtained.展开更多
The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to t...The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to the electrolyte through anodic film, the heat transferred to the coolant through aluminum substrate is more beneficial to the growth of anodic film. The film forming speed, film thickness, density and hardness are significantly increased as the degree of undercooling of the coolant increases. The degree of undercooling of the coolant, which is necessary for the growth of anodic film, is related to the degree of undercooling of the electrolyte, thickness of aluminum substrate, thickness of anodic film, natural parameters of bubble covering and current density. The microstructure and performance of the oxidation film could be controlled by the temperature of the coolant.展开更多
In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond...In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond(BDD) film electrodes using Ta as substrates were employed for AO of SA.In the case of FP and UV/H_2O_2,most favorable experimental conditions were determined for each process and these were used for comparing with AO process.The study showed that the FP was the most effective process under aci...展开更多
文摘Self-ordering of the cell arrangement of the anodic porous alumina was prepared in oxalic acid solution at a constant potential of 40V and at a temperature of 20C. The honeycomb structure made by one step anodization method and two step anodization method is different. Pores in the alumina film prepared by two step anodization method were more ordered than those by one step anodization method.
文摘The microstructure and corrosion resistance of different boric/sulfuric acid anodic(BSAA) films on 7050 aluminum alloy were studied by atomic force microscopy(AFM),electrochemical impedance spectroscopy(EIS) and scanning Kelvin probe(SKP).The results show that boric acid does not change the structure of barrier layer of anodic film,but will significantly affect the structure of porous layer,consequently affect the corrosion resistance of anodic film.As the content of boric acid in electrolyte increases from 0 to 8 g/L,the resistance of porous layer(Rp) of BSAA film increases,the capacitance of porous layer(CPEp) decreases,the surface potential moves positively,the pore size lessens,and the corrosion resistance improves.However,the Rp,CPEp and surface potential will change towards opposite direction when the content of boric acid is over 8 g/L.
基金Project(51271012)supported by the National Natural Science Foundation of China
文摘The influence of adipic acid on the formation and corrosion resistance of anodic oxide film fabricated on 2024 aluminum alloy was investigated. The morphology was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. The corrosion resistance was evaluated by electrochemical impedance spectroscopy (EIS). The results showed that the adipic acid was absorbed at the electrolyte/anodic layer interface during anodizing. The corrosion rate of anodic film decreased and the film thickness increased. The film was uniform and compact especially at the film/substrate interface. After sealing procedure, anodic film formed with the addition of adipic acid exhibited improved dielectric property and corrosion resistance in aggressive environment.
基金Project supported by University New Materials Disciplines Construction Program of Beijing Region
文摘Aluminum capacitor foils with a tunnel etch structure were reacted with boiling water and then anodized at 530 V in boric acid solution or boric acid+citric acid mixed solution.The microstructure and crystallinity of the resulting anodized film were examined by TEM and XRD.The special capacitance,resistance and withstanding voltage of the film were explored with electrochemical impedance spectroscopy(EIS),LCR meter and small-current charging.The results show that the high voltage anodized oxide film consists of an inner layer with high crystallinity and an outer layer with low crystallinity.However,the crystallinity of the film formed in boric acid+citric acid mixed solution is higher than that of the film formed in only boric acid solution,leading to an increase in film's field strength and special capacitance.Meanwhile,there are more defects from phase transformation in the out layer of the film formed in boric acid+citric acid mixed solution than in that of film formed in only boric acid solution,leading to a decrease in film's resistance and withstanding voltage.
基金Projects(51374066,U1608254) supported by the National Natural Science Foundation of ChinaProject(2014BAC03B07) supported by the National Key Technology R&D Program of ChinaProjects(2012223002,2014020037) supported by Industrial Research Projects in Liaoning Province,China
文摘The leaching kinetics of selenium from copper anode slimes was studied in a nitric acid?sulfuric acid mixture.The effects of main parameters on selenium leaching showed that the leaching rate of selenium was practically independent of stirring speed,while dependent on temperature and the concentrations of HNO3and H2SO4.The leaching of selenium includes two stages.The activation energy in the first stage is103.5kJ/mol,and the chemical reaction is the rate controlling step.It was almost independent of H2SO4concentration and dependent on HNO3concentration since the empirical reaction order with respect to HNO3concentration is0.5613.In the second stage,the activation energy is30.6kJ/mol,and the process is controlled by a mixture of diffusion and chemical reaction.The leaching of selenium was almost independent of HNO3concentration.
文摘Service life of two different oxide anodes in phenolsulfonic acid (PSA) solution was investigated by accelerated electrolysis. The durability of Ti/IrO_2+Ta_2 O_5 anode increased by the addition of SnO_2 in the mixed oxides. The degradation mechanisms of Ti/IrO_2+ Ta_2 O_5 and Ti/IrO_2 +Ta_2 O_5 +SnO+2 anodes were different. It was shown from the observation of scanning electron microscopy (SEM) and the electrochcmical measurement that, the deactivation of Ti/IrO_2 + Ta_2 O_5 anode was due to the build-up of an organic film on surface. The growth of the covered film on surface was restricted by addition of SnO_2, which resulted in increasing of the service life of anodes. The over-potential for oxygen evolution on Ti/IrO_2 +Ta_2 O_5 electrode increased after doping SnO_2, and the intermediate products of PSA building-up on the surface was much more rapidly oxidized. Meanwhile, a certain part of the surface oxide deposit entered into the solution leading to loss of oxides, which resulted in degradation of Ti/IroO_2 + Ta_2 O_5 anode containing SnO_2 component.
基金financially supported by the National Natural Science Foundation of China(Nos.U2004215,51974280,51774252)the Foundation of Henan Educational Committee,China(No.20HASTIT012).
文摘Humic acid(HA)was studied as a modifier in the SnO_(2) anode preparation for the electrochemical performance improvement.Scanning electron microscopy,180°peel test,and nanoindentation experiment were used to examine the influence of the HA on electrode.The results showed that the addition of HA could improve the dispersion uniformity of all particles.The components were tightened,increasing the difficulty of peeling off the film from the current collector.The deformation resistance of the electrode was greatly enhanced by the HA modification.The electrochemical test results showed that the anode from the normal micron-sized SnO_(2)particles with the HA modifier exhibited significant progress in electrochemical performance compared with those without HA.The reversible specific capacity of the SnO_(2) anode can be maintained as high as 733.4 mA·h/g at a current density of 100 mA/g after 50 cycles.Therefore,HA is a promising modifier for anode preparation of lithium-ion batteries.
基金Project(06JJ4005) supported by the Natural Science Foundation of Hunan Province, China
文摘The anodizing oxidation process on 2024 aluminum alloy was researched in the mixed electrolyte with the composition of 30 g/L boric acid, 2 g/L sulfosalicylic acid and 8 g/L phosphate. The results reveal that the pre-treatment and the composition of the mixed electrolyte have influence on the properties of the films and the anodizing oxidation process. Under the condition of controlled potential, the anodizing oxidation current—time response curve displays "saddle" shape. First, the current density reaches a peak value of 8-20 A/dm2 and then decreases rapidly, finally maintains at 1-2 A/dm2. The film prepared in the mixed electrolyte is of porous-type with 20 nm in pore size and 500 μm-2 in porosity. Compared with the conventional anodic film obtained in sulfuric acid, the pore wall of the porous layer prepared in this work is not continuous, which seems to be deposited by small spherical grains. This porous structure of the anodic film may result from the characteristics of the mixed electrolyte and the special anodizing oxidation process. The surface analysis displays that the anodic film is amorphous and composed of O, Al, C, P, S, Si and no copper element is detected.
基金the International Center for Science, High Technology & Environmental Sciences for financial support of this work (No. 1.213)
文摘In this paper, recovery of silver from anode slime of Sarcheshmeh copper complex in lran and subsequent synthesis of silver nanoparticles from leaching solution is investigated. Sarcheshmeh anode slime is mainly consisted ofCu, Ag, Pb and Se. Amount of Ag in the considered anode slime was 5.4% (by weight). The goal was to recover as much as possible Ag from anode slime at atmospheric pressure to synthesize Ag nanoparticles. Therefore, acid leaching was used for this purpose. The anode slime was leached with sulfuric and nitric acid from room to 90 ~C at different acid concentrations and the run which yielded the most recovery of Ag was selected for Ag nanoparticles synthesis. At this condition, Cu, Pb and Se are lea- ched as well as Ag. To separate Ag from leach solution HCI was added and silver was precipitated as AgCl which were then dissolved by ammonia solution. The Ag nanoparticles are synthesized from this solution by chemical reduction method by aid of sodium borohydride in the presence of PVP and PEG as stabilizers. The synthesized Ag nanoparticles showed a peak of 394 nm in UV-vis spectrum and TEM images showed a rather uniform Ag nanoparticles of 12 nm.
文摘Black lead, Ti-Ru and Ti-PbO_2 were used as anode and stainless steel was used as cathode.The electrolytic process of producing hypophosphorous acid with four-compartment electrodia1yticcell was studied. The comparison of some factors, such as anodic voltage, product concentrationand current efficiency, of black lead, Ti-Ru, and Ti-PbO_2 electrodes was conducted. As a result, theTi-PbO_2 electrode is the optimal anode material used, it can be in electrolytic proccss for producinghypophosphorous acid.
文摘The addition of phosphoric acid into sulfuric acid solution is mentioned to be helpful in the reduction of sulfation after deep discharge of lead-acid battery. The anodic behavior of Pb and Pb?In alloys was studied in pure phosphoric acid and sulfuric acid containing various concentrations of phosphoric. The electrochemical measurements were performed using potentiodynamic, potentiostatic and cyclic voltammetric techniques. The composition and morphology of passive layer formed on the surfaces of Pb and Pb?In alloys were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy analysis (EDX) and scanning electron microscopy (SEM). The potentiodynamic study shows that the passive current density increases with increasing the indium content in the alloy in the examined solutions. The addition of 0.1 mol/L H3PO4 into theelectrolyte is more effective to decrease the thickness of passive film on the surface of alloys containing higher indium content (10% and 15%). The XRD, EDX and SEM data reveal that the formation of PbSO4 and PbO on the surface decreases with increasing the indium level in the alloy and is completely prevented at higher indium content (15%) in mixed acid.
基金supported by the National Natural Science Foundation of China(No.22075262).
文摘Marine sediment microbial fuel cell(MSMFCs)can be utilized as a long lasting power source to drive small instruments to work for long time on ocean floor and its higher power has a significant meaning for practical application.Anode modification can greatly improve the performance of MSMFCs.Herein,humic acid(HA)and humic acid-iron ion complex(HA-Fe)were used to modify the anode for constructing a better MSMFCs.The results indicated that HA-Fe modified anode,better than HA modification,significantly improved the MSMFCs cell power output.The maximum power density of HA-Fe modified MSMFCs is 165.3 mW m−2,which are 6.5-folds of blank MSMFCs.The number of microorganisms on anode,redox activity,and relative kinetic activity were 1.8-,6.1-,and 13.1-folds of blank MSMFCs,respectively.The MSMFCs improvement would be attributed to the electron transfer media of HA and the valence conversion of Fe ions.A synergistic interaction between the naturally occurring HA and Fe ions on the anodic surface in marine sediments would make the modified anodes have‘renewable’characteristics,which is beneficial for the MSMFCs to maintain its long-term higher power.
文摘Boron-doped diamond (BDD) film electrodes using Ta as substrates were employed for anodic oxidation of salicylic acid (SA). The effects of operational variables including initial concentration, current density, temperature and pH were examined. The results showed that BDD films deposited on the Ta substrates had high electrocatalytic activity for SA degradation. There was little effect ofpH on SA degradation. The current efficiency (CE) ,aas fbund to be dependent mainly on the initial SA concentration, current density and temperature. Chemical oxygen demand (COD) was reduced from 830 mg/L to 42 mg/L under a current density of200A/m^2 at 30℃.
基金supported by the National High Technology Research and Development Program of China (No. 2007AA03Z337)the Harbin Special Creation Foundation for Science and Technology of Fellow in China (No. 2006RFQXG032)
文摘The aim of this work was to investigate the effects of calcination/acid-activation on the composition, structure, and photocatalytic (PC) reduction property of an anodic oxidation TiO2/Ti film catalyst. The surface morphology and phase composition were examined by scanning electron microscopy and X-ray diffraction. The catalytic property of the film catalysts was evaluated through the removal rate of potassium chromate during the PC reduction process. The results showed that the film catalysts were composed of anatase and rutile TiO2 with a micro-porous surface structure. The calcination treatment increased the content of TiO2 in the film, changed the relative ratio of anatase and rutile TiO2, and decreased the size of the micro pores of the film catalysts. The removal rate of potassium chromate was related to the technique parameters of calcination/acid-activation treatment. When the anodic oxidation TiO2/Ti film catalyst was calcined at 873 K for 30 min and then acid-activated in the concentrated H2SO4 for 60 min, it presented the highest catalytic property, with the removal rate of potassium chromate of 96.3% during the PC reduction process under the experimental conditions.
基金supported by the National Natural Science Foundation of China (Grant Nos.92372101,52162036 and 21875155)the Fundamental Research Funds for the Central Universities (Grant Nos.20720220010)the National Key Research and Development Program of China (Grant Nos.2021YFA1201502)。
文摘The design of advanced binders plays a critical role in stabilizing the cycling performance of large-volume-effect silicon monoxide(SiO)anodes.For the classic polyacrylic acid(PAA)binder,the self-association of-COOH groups in PAA leads to the formation of intramolecular and intermolecular hydrogen bonds,greatly weakening the bonding force of the binder to SiO surface.However,strengthening the binder-material interaction from the perspective of binder molecular regulation poses a significant challenge.Herein,a modified PAA-Li_(x)(0.25≤x≤1)binder with prominent mechanical properties and adhesion strength is specifically synthesized for SiO anodes by quantitatively substituting the carboxylic hydrogen with lithium.The appropriate lithium substitution(x=0.25)not only effectively increases the number of hydrogen bonds between the PAA binder and SiO surface owing to charge repulsion effect between ions,but also guarantees moderate entanglement between PAA-Li_x molecular chains through the ion-dipole interaction.As such,the PAA-Li_(0.25)/SiO electrode exhibits exceptional mechanical properties and the lowest volume change,as well as the optimum cycling(1237.3 mA h g^(-1)after 100cycles at 0.1 C)and rate performance(1000.6 mA h g^(-1)at 1 C),significantly outperforming the electrode using pristine PAA binder.This work paves the way for quantitative regulation of binders at the molecular level.
基金funded by the National Natural Science Foundation of China(U21B2057,12102328,and 52372252)the Newly Introduced Scientific Research Start-up Funds for Hightech Talents(DD11409024).
文摘Zinc-ion batteries are promising for large-scale electrochemical energy storage systems,which still suffer from interfacial issues,e.g.,hydrogen evolution side reaction(HER),self-corrosion,and uncontrollable dendritic Zn electrodeposition.Although the regulation of electric double layer(EDL)has been verified for interfacial issues,the principle to select the additive as the regulator is still misted.Here,several typical amino acids with different characteristics were examined to reveal the interfacial behaviors in regulated EDL on the Zn anode.Negative charged acidic polarity(NCAP)has been unveiled as the guideline for selecting additive to reconstruct EDL with an inner zincophilic H_(2)O-poor layer and to replace H_(2)O molecules of hydrated Zn^(2+)with NCAP glutamate.Taking the synergistic effects of EDL regulation,the uncontrollable interface is significantly stabilized from the suppressed HER and anti-self-corrosion with uniform electrodeposition.Consequently,by adding NCAP glutamate,a high average Coulombic efficiency of 99.83%of Zn metal is achieved in Zn|Cu asymmetrical cell for over 2000 cycles,and NH4V4O10|Zn full cell exhibits a high-capacity retention of 82.1%after 3000 cycles at 2 A g^(-1).Recapitulating,the NCAP principle posted here can quicken the design of trailblazing electrolyte additives for aqueous Zn-based electrochemical energy storage systems.
基金Project(2012BAE06B05)supported by the National Science and Technology Support Plan of China
文摘A process using soda roasting-alkaline leaching-acid leaching to remove selenium, tellurium and copper sequentially from the copper anode slime with high content of Ni was tested. The mechanism of this process was outlined based on thermodynamic analysis and the change in the XRD patterns of different intermediate products. During soda roasting, copper which occurs as Cu4SeTe in the slime was oxidized to CuO and Cu3TeO6, while selenium and tellurium were oxidized to Ag2SeO4 and Cu3TeO6, respectively. Ag2SeO4 in the calcine is easily leached in the subsequent alkaline leaching, but CuTeO3 resulted from the decomposition of CCu3TeO6 remains inactive in this process through which selenium is leached out in preference to tellurium. The CuTeO3 and Cu O in the alkaline leaching residue can be leached in the following sulfuric acid leaching process. More than 97% of selenium was leached with little tellurium leached under the optimal condition. Then, more than 96% of copper and almost all the tellurium were leached out in the following acid leaching process.
基金Projects (50771092,21073162) supported by the National Natural Science Foundation of ChinaProject (08JC1421600) supported by the Science and Technology Commission of Shanghai,ChinaProject (2008AZ2018) supported by the Science and Technology Bureau of Jiaxing,China
文摘A kind of environmental friendly anodizing routine for AZ91D magnesium alloy,based on an alkaline borate-potassium acid phthalate(KAP) electrolyte,was studied.The effect of KAP on the properties of the anodized film was investigated by scanning electron microscopy(SEM),X-ray diffraction(XRD),energy dispersive spectrometry(EDS),potentiodynamic polarization and electrochemical impedance spectroscopy(EIS),respectively.The results showed that the anodizing process,surface morphology,thickness,phase structure and corrosion resistance of the anodized film were strongly dependent on the concentration of KAP.In the presence of adequate KAP,a compact and smooth anodized film with excellent corrosion resistance was obtained.
基金Project (SBZDPY-11-17) supported by the Fund on Key Laboratory Project for Hydrodynamic Force, Ministry of Education, China Project (SZD0502-09-0) supported by Key Disciplines of Materials Processing Engineering of Sichuan Province, China
文摘The special experimental device and sulfuric acid electrolyte were adopted to study the influence of anodic oxidation heat on hard anodic film for 2024 aluminum alloy. Compared with the oxidation heat transferred to the electrolyte through anodic film, the heat transferred to the coolant through aluminum substrate is more beneficial to the growth of anodic film. The film forming speed, film thickness, density and hardness are significantly increased as the degree of undercooling of the coolant increases. The degree of undercooling of the coolant, which is necessary for the growth of anodic film, is related to the degree of undercooling of the electrolyte, thickness of aluminum substrate, thickness of anodic film, natural parameters of bubble covering and current density. The microstructure and performance of the oxidation film could be controlled by the temperature of the coolant.
文摘In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond(BDD) film electrodes using Ta as substrates were employed for AO of SA.In the case of FP and UV/H_2O_2,most favorable experimental conditions were determined for each process and these were used for comparing with AO process.The study showed that the FP was the most effective process under aci...