The effects of strain, strain rate and temperature on the mechanical behavior of 22MnB5 boron steel deformed isothermally under uniaxial tension tests and the experimental characterization of 22MnB5 boron steel in the...The effects of strain, strain rate and temperature on the mechanical behavior of 22MnB5 boron steel deformed isothermally under uniaxial tension tests and the experimental characterization of 22MnB5 boron steel in the austenitic region have been investigated. Based on the crystal plasticity theory and thermal kinematics, an improved integration model is presented. In this model, the elastic deformation gradient is the integration variable of the governing equation, which contains not only the elastic deformation but also the thermal effects. In the coupled thermo- mechanical process, this model can reveal the evolution of microstructures such as the rotation of a single crystal and the slip systems in each of them. The plastic behavior of the boron steel can be well described by the presented model.展开更多
基金funded by the Key Project of the National Natural Science Foundation of China(Nos.10932003 and 11272075)Project of Chinese National Programs for Fundamental Research and Development(Nos.2012CB619603 and 2010CB832700)‘04’Great Project of Ministry of Industrialization and Information of China(No.2011ZX04001-21)
文摘The effects of strain, strain rate and temperature on the mechanical behavior of 22MnB5 boron steel deformed isothermally under uniaxial tension tests and the experimental characterization of 22MnB5 boron steel in the austenitic region have been investigated. Based on the crystal plasticity theory and thermal kinematics, an improved integration model is presented. In this model, the elastic deformation gradient is the integration variable of the governing equation, which contains not only the elastic deformation but also the thermal effects. In the coupled thermo- mechanical process, this model can reveal the evolution of microstructures such as the rotation of a single crystal and the slip systems in each of them. The plastic behavior of the boron steel can be well described by the presented model.