Boron is an important industrial raw material often sourced from minerals containing different compounds that cocrystallize,which makes it difficult to separate the mineral phases through conventional beneficiation.Th...Boron is an important industrial raw material often sourced from minerals containing different compounds that cocrystallize,which makes it difficult to separate the mineral phases through conventional beneficiation.This study proposed a new treatment called flash reduction-melting separation(FRMS)for boron-bearing iron concentrates.In this method,the concentrates were first flash-reduced at the temperature under which the particles melt,and the slag and the reduced iron phases disengaged at the particle scale.Good reduc-tion and melting effects were achieved above 1550℃.The B_(2)O_(3) content in the separated slag was over 18wt%,and the B content in the iron was less than 0.03wt%.The proposed FRMS method was tested to investigate the effects of factors such as ore particle size and tem-perature on the reduction and melting steps with and without pre-reducing the raw concentrate.The mineral phase transformation and morphology evolution in the ore particles during FRMS were also comprehensively analyzed.展开更多
In the present paper,the fundamental research on the properties of boron-rich slag melting separated from boron-bearing iron concentrate was performed.The melting and fluidity of B2O3–MgO–SiO2–FeO slag system,cryst...In the present paper,the fundamental research on the properties of boron-rich slag melting separated from boron-bearing iron concentrate was performed.The melting and fluidity of B2O3–MgO–SiO2–FeO slag system,crystallization of separated boron-rich slag and factors on the extraction efficiency of boron-rich slag were systematically investigated.B2O3 content would heavily affect the melting and fluidity property of boron-rich slag.Generally,FeO could improve the melting and fluidity property of boron-rich slag.Boron-containing crystalline phase mainly precipitated in temperature range from 1200°C to 1100°C.Higher smelting temperature and B2O3 reduction ratio were negative for the extraction of boron.The cooling rate of 10–20°C/min was better for the crystallization of boron-containing crystalline phase.Based on the obtained experimental results,the optimum operating parameters for the development of pyrometallurgical boron and iron separation process and further boron-rich slag cooling process were proposed.展开更多
The mechanism of improving compressive strength of magnetite pellet by adding boron-bearing iron concentrate was studied. Boron-bearing iron concentrate and magnetite were mixed, pelletized and roasted under differ en...The mechanism of improving compressive strength of magnetite pellet by adding boron-bearing iron concentrate was studied. Boron-bearing iron concentrate and magnetite were mixed, pelletized and roasted under differ ent roasting conditions. Then, compressive strength of pellets was tested, and polished sections of the roasted pellets were analyzed from the perspective of mineralogy. Finally, the effects of different proportions, roasting temperatures and roasting time of boron-bearing iron concentrate on the compressive strength of magnetite pellets were investigated and explained.展开更多
Realizing the boron and iron separation through selective reduction and melting separation of boron-bearing iron con- centrate is of great significance for the utilization of crude ludwigite. The reduction and melting...Realizing the boron and iron separation through selective reduction and melting separation of boron-bearing iron con- centrate is of great significance for the utilization of crude ludwigite. The reduction and melting separation mechanism of boron-bearing iron concentrate/coal composite pellet was systematically investigated. The reduction and melting separation test of small size pellet was performed to reveal the evolution of slag and iron in the melting separation process. The isothermal reduction experiment showed the relationship between reduction stage and melting separation stage, and the step reduction and melting separation was perfectly achieved. Coal particles existed through the reduction and melting separation process and finally formed brown residue around the separated product. The pellet could not realize melting separation when the B2O3 content in the concentrate was lower than 6.00 wt%.展开更多
基金supported by the Science and Technology Special Plan Project from China Minmetals Group (No.2020ZXA01)the International Exchange and Growth Program for Young Teachers (No.QNXM20220061)the National Key Research and Development Program of China (No.2022YFC2906100).
文摘Boron is an important industrial raw material often sourced from minerals containing different compounds that cocrystallize,which makes it difficult to separate the mineral phases through conventional beneficiation.This study proposed a new treatment called flash reduction-melting separation(FRMS)for boron-bearing iron concentrates.In this method,the concentrates were first flash-reduced at the temperature under which the particles melt,and the slag and the reduced iron phases disengaged at the particle scale.Good reduc-tion and melting effects were achieved above 1550℃.The B_(2)O_(3) content in the separated slag was over 18wt%,and the B content in the iron was less than 0.03wt%.The proposed FRMS method was tested to investigate the effects of factors such as ore particle size and tem-perature on the reduction and melting steps with and without pre-reducing the raw concentrate.The mineral phase transformation and morphology evolution in the ore particles during FRMS were also comprehensively analyzed.
基金Project(FRF-TP-16-019A1)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(51274033)supported by the National Natural Science Foundation of China
文摘In the present paper,the fundamental research on the properties of boron-rich slag melting separated from boron-bearing iron concentrate was performed.The melting and fluidity of B2O3–MgO–SiO2–FeO slag system,crystallization of separated boron-rich slag and factors on the extraction efficiency of boron-rich slag were systematically investigated.B2O3 content would heavily affect the melting and fluidity property of boron-rich slag.Generally,FeO could improve the melting and fluidity property of boron-rich slag.Boron-containing crystalline phase mainly precipitated in temperature range from 1200°C to 1100°C.Higher smelting temperature and B2O3 reduction ratio were negative for the extraction of boron.The cooling rate of 10–20°C/min was better for the crystallization of boron-containing crystalline phase.Based on the obtained experimental results,the optimum operating parameters for the development of pyrometallurgical boron and iron separation process and further boron-rich slag cooling process were proposed.
基金Item Sponsored by National Natural Science Foundation of China(51204013)Fundamental Research Funds for Central Universities of China(FRF-TP-12-020A)
文摘The mechanism of improving compressive strength of magnetite pellet by adding boron-bearing iron concentrate was studied. Boron-bearing iron concentrate and magnetite were mixed, pelletized and roasted under differ ent roasting conditions. Then, compressive strength of pellets was tested, and polished sections of the roasted pellets were analyzed from the perspective of mineralogy. Finally, the effects of different proportions, roasting temperatures and roasting time of boron-bearing iron concentrate on the compressive strength of magnetite pellets were investigated and explained.
基金The authors would like to express their gratitude for the financial support of the China Postdoctoral Science Foundation (No. 2016M600919) and National Natural Science Foundation of China (No. 51274033).
文摘Realizing the boron and iron separation through selective reduction and melting separation of boron-bearing iron con- centrate is of great significance for the utilization of crude ludwigite. The reduction and melting separation mechanism of boron-bearing iron concentrate/coal composite pellet was systematically investigated. The reduction and melting separation test of small size pellet was performed to reveal the evolution of slag and iron in the melting separation process. The isothermal reduction experiment showed the relationship between reduction stage and melting separation stage, and the step reduction and melting separation was perfectly achieved. Coal particles existed through the reduction and melting separation process and finally formed brown residue around the separated product. The pellet could not realize melting separation when the B2O3 content in the concentrate was lower than 6.00 wt%.
基金supported by the National Natural Science Foundation of China(T2225013,12174142,11904142,and 11534003)the Program for Jilin University Science and Technology Innovative Research Team(2021TD–05)。