期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Coated boron layers by boronization and a real-time boron coating using an impurity powder dropper in the LHD
1
作者 Naoko ASHIKAWA Robert LUNSFORD +4 位作者 Federico NESPOLI Erik GILSON Yaowei YU Jiansheng HU Shinichiro KADO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期25-31,共7页
In the Large Helical Device(LHD),diborane(B2H6)is used as a standard boron source for boronization,which is assisted by helium glow discharges.In 2019,a new Impurity Powder Dropper(IPD)system was installed and is unde... In the Large Helical Device(LHD),diborane(B2H6)is used as a standard boron source for boronization,which is assisted by helium glow discharges.In 2019,a new Impurity Powder Dropper(IPD)system was installed and is under evaluation as a real-time wall conditioning technique.In the LHD,which is a large-sized heliotron device,an additional helium(He)glow discharge cleaning(GDC)after boronization was operated for a reduction in hydrogen recycling from the coated boron layers.This operational time of 3 h was determined by spectroscopic data during glow discharges.A flat hydrogen profile is obtained on the top surface of the coated boron on the specimen exposed to boronization.The results suggest a reduction in hydrogen at the top surface by He-GDC.Trapped oxygen in coated boron was obtained by boronization,and the coated boron,which has boron-oxide,on the first wall by B-IPD was also shown.Considering the difference in coating areas between B2H6 boronization and B-IPD operation,it would be most effective to use the IPD and B2H6 boronization coating together for optimized wall conditioning. 展开更多
关键词 boron layer oxygen impurity hydrogen recycling impurity powder dropper LHD EAST
下载PDF
Abrasion Behaviour of Boronized Layer
2
作者 曲敬信 武晓丽 邵荷生 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1992年第5期383-386,共4页
1.IntroductionBoronizing can evidently increase thesurface hardness and wear resistance of me-tallic materials[1].It is simple in technique,not expensive and widely used on tools,diesand some other parts which are eas... 1.IntroductionBoronizing can evidently increase thesurface hardness and wear resistance of me-tallic materials[1].It is simple in technique,not expensive and widely used on tools,diesand some other parts which are easy towear.However the wear mechanism andbehaviour of boronized layer are not clearwhen abraded by mixed abradants such ascoal,hard mineral etc.[2,3].Several metallic materials commonly 展开更多
关键词 boronized layer abrasion wear wear mechanism
下载PDF
Improving Performance of Inoculating Alloy Wires by Coating a Boron Nitride Layer
3
作者 CHENG Shao-heng FAN Feng-yang XU Yang LI Shuo ZHU Pin-wen LI Hong-dong LIU Jun-song 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2013年第4期816-819,共4页
The paper reports the deposition(by magnetron sputtering) and properties of polycrystalline boron nitride (BN) layers on commercial inoculating alloy wires. As is characterized by means of Fourier transform infra... The paper reports the deposition(by magnetron sputtering) and properties of polycrystalline boron nitride (BN) layers on commercial inoculating alloy wires. As is characterized by means of Fourier transform infrared(FTIR) spectroscopy, electron energy dispersive X-ray(EDX) spectroscopy and scanning electron microscopy(SEM), the thin BN layers consist of hexagonal and orthorhombic BN phases and are smooth without cracks. Organism transfer- ring-circles experiments reveal that the adhesion between the BN layer and alloy wire is very good after tens of cycles. It is demonstrated that the BN layers covered wires are biomaterial lubricious and self-cleaning. As a result, BN layer would effectively enhance the function and efficiency of inoculating alloy wires, which could be widely ap- plied to bio-experimentation and biomedicine apparatuses. 展开更多
关键词 Inoculating alloy wire Boron nitride layer Magnetron sputtering SELF-CLEANING Organism transferring
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部