期刊文献+
共找到264篇文章
< 1 2 14 >
每页显示 20 50 100
关于Bosonization理论的一个新结果
1
作者 赵文正 郭静静 《河南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第2期1-4,共4页
改进了其中的Bosonization定理,从而使得以上对应是一一的,这也推广了N.Andruskiewitsch等给出的Hopf代数与超Hopf代数的一一对应定理,并且Majid的Bosonization定理可以作为本文结论的一个推论.
关键词 H-模范畴 bosonization定理 对极
下载PDF
Bosonization and Random-Phase Approximation of the Interacting Fermions in High Dimensions
2
作者 徐铁峰 李文铸 《Chinese Physics Letters》 SCIE CAS CSCD 1997年第12期889-892,共4页
The random-phase approximation(RPA)of interacting fermions is recast into a bosonized form and the RPA results are rederived by the standard bosonization method,which shows that there is a natural connection between b... The random-phase approximation(RPA)of interacting fermions is recast into a bosonized form and the RPA results are rederived by the standard bosonization method,which shows that there is a natural connection between bosonization and RPA. 展开更多
关键词 BOSON APPROXIMATION FERMI
下载PDF
Fractional Topological Insulators—A Bosonization Approach
3
作者 D. Schmeltzer 《Journal of Modern Physics》 2016年第1期118-128,共11页
A metallic disk with strong spin orbit interaction is investigated. The finite disk geometry introduces a confining potential. Due to the strong spin-orbit interaction and confining potential the metal disk is describ... A metallic disk with strong spin orbit interaction is investigated. The finite disk geometry introduces a confining potential. Due to the strong spin-orbit interaction and confining potential the metal disk is described by an effective one-dimensional model with a harmonic potential. The harmonic potential gives rise to classical turning points. As a result, open boundary conditions must be used. We bosonize the model and obtain chiral Bosons for each spin on the edge of the disk. When the filling fraction is reduced to the electron-electron interactions are studied by using the Jordan Wigner phase for composite fermions which give rise to a Luttinger liquid. When the metallic disk is in the proximity with a superconductor, a Fractional Topological Insulator is obtained. An experimental realization is proposed. We show that by tunning the chemical potential we control the classical turning points for which a Fractional Topological Insulator is realized. 展开更多
关键词 SPIN-ORBIT Chiral Bosons CHAINS Metallic Disk Topological Insulators
下载PDF
Coupling of quasi-localized and phonon modes in glasses at low frequency
4
作者 段军 蔡松林 +2 位作者 丁淦 戴兰宏 蒋敏强 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期564-571,共8页
Boson peak of glasses,a THz vibrational excess compared to Debye squared-frequency law,remains mysterious in condensed-matter physics and material science.It appears in many different kinds of glassy matters and is al... Boson peak of glasses,a THz vibrational excess compared to Debye squared-frequency law,remains mysterious in condensed-matter physics and material science.It appears in many different kinds of glassy matters and is also argued to exist in damped crystals.A consensus is that boson peak originates from the coupling of the(quasi)-localized non-phonon modes and the plane-wave-like phonon modes,but the coupling behavior is still not fully understood.In this paper,by modulating the content of localized modes and the frequencies of phonon modes,the coupling is clearly reflected in the localization and anharmonicity of low-frequency vibrational modes.The coupling enhances with increasing cooling rate and sample size.For finite sample size,phonon modes do not fully intrude into the low frequency to form a dense spectrum and they are not sufficiently coupled to the localized modes,thus there is no Debye level and boson peak is ill-defined.This suggestion remains valid in the presence of thermal motions induced by temperature,even though the anharmonicity comes into play.Our results point to the coupling of quasi-localized and phonon modes and its relation to the boson peak. 展开更多
关键词 metallic glasses low-frequency vibrational modes plane wave boson peak
下载PDF
Foundations of the Scale-Symmetric Theory and the Illusory Total Width of the Off-Shell Higgs Bosons
5
作者 Sylwester Kornowski 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期398-437,共40页
Here we present the foundations of the Scale-Symmetric Theory (SST), i.e. the fundamental phase transitions of the initial inflation field, the atom-like structure of baryons and different types of black holes. Within... Here we present the foundations of the Scale-Symmetric Theory (SST), i.e. the fundamental phase transitions of the initial inflation field, the atom-like structure of baryons and different types of black holes. Within SST we show that the transition from the nuclear strong interactions in the off-shell Higgs boson production to the nuclear weak interactions causes that the real total width of the Higgs boson from the Higgs line shape (i.e. 3.3 GeV) decreases to 4.3 MeV that is the illusory total width. Moreover, there appear some glueballs/condensates with the energy 3.3 GeV that accompany the production of the off-shell Higgs bosons. 展开更多
关键词 Scale-Symmetric Theory Black Holes Higgs Boson
下载PDF
Bound State Description of Particles from a Quantum Field Theory of Fermions and Bosons, Compatible with Relativity
6
作者 Hans-Peter Morsch 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第2期562-573,共12页
Both, the dilemma to find a quantum field theory consistent with Einstein’s law of relativity and the problem to describe existing particles as bound states of matter has been solved by calculating bound state matrix... Both, the dilemma to find a quantum field theory consistent with Einstein’s law of relativity and the problem to describe existing particles as bound states of matter has been solved by calculating bound state matrix elements from a dual fermion-boson Lagrangian. In this formalism, the fermion binding energies are compensated by boson energies, indicating that particles can be generated out of the vacuum. This yields quantitative solutions for various mesons ω (0.78 GeV) - Υ (9.46 GeV) and all leptons e, μ and τ, with uncertainties in the extracted properties of less than 1‰. For transparency, a Web-page with the address htpps://h2909473.stratoserver.net has been constructed, where all calculations can be run on line and also the underlying fortran source code can be inspected. 展开更多
关键词 Quantum Field Theory of Fermion and Boson Fields Hadrons and Leptons Described as Bound States of Relativistic Fermions and Bosons Leading to a Total Energy Equal to Zero
下载PDF
The Substructure of Elementary Particles Demonstrated by the I-Theory
7
作者 H. H. Swami Isa Christophe Dumas 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第2期469-514,共46页
Present studies in physics assume that elementary particles are the building blocks of all matter, and that they are zero-dimensional objects which do not occupy space. The new I-Theory predicts that elementary partic... Present studies in physics assume that elementary particles are the building blocks of all matter, and that they are zero-dimensional objects which do not occupy space. The new I-Theory predicts that elementary particles do indeed have a substructure, three dimensions, and occupy space, being composed of fundamental particles called I-particles. In this article we identify the substructural pattern of elementary particles and define the quanta of energy that form each elementary particle. We demonstrate that the substructure comprises two classes of quanta which we call “attraction quanta” and “repulsion quanta”. We create a model that defines the rest-mass energy of each elementary particle and can predict new particles. Lastly, in order to incorporate this knowledge into the contemporary models of science, a revised periodic table is proposed. 展开更多
关键词 I-Theory I-Particle Causal Subtle Gross Quanta Attraction Quanta Repulsion Quanta Elementary Particles LEPTONS BOSONS Hadron Periodic Table Black Matter White Matter Red Matter Gravitation Strong Force Weak Force Quantum Theory Heat Quantum Photon Neutrino
下载PDF
Dynamic of Scalar Bosons in Aharonov-Bohm Magnetic Field
8
作者 Frédéric D. Y. Zongo 《Journal of Applied Mathematics and Physics》 2024年第1期268-276,共9页
We study the dynamic of scalar bosons in the presence of Aharonov-Bohm magnetic field. First, we give the differential equation that governs this dynamic. Secondly, we use variational techniques to show that the follo... We study the dynamic of scalar bosons in the presence of Aharonov-Bohm magnetic field. First, we give the differential equation that governs this dynamic. Secondly, we use variational techniques to show that the following Schrödinger-Newton equation: , where A is an Aharonov-Bohm magnetic potential, has a unique ground-state solution. 展开更多
关键词 Scalar Boson Aharonov-Bohm Magnetic Field Schrödinger-Newton Equation Ground-State Solution
下载PDF
Dynamics of bubble-shaped Bose-Einstein condensates on two-dimensional cross-section in micro-gravity environment
9
作者 张铁夫 李成蹊 刘伍明 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期200-205,共6页
We investigated the dynamic evolution and interference phenomena of bubble-shaped Bose-Einstein condensates achievable in a micro-gravity environment.Using numerical solutions of the Gross-Pitaevskii equation describi... We investigated the dynamic evolution and interference phenomena of bubble-shaped Bose-Einstein condensates achievable in a micro-gravity environment.Using numerical solutions of the Gross-Pitaevskii equation describing the dynamic evolution of the bubble-shaped Bose-Einstein condensates,we plotted the evolution of the wave function density distribution on its two-dimensional(2D)cross-section and analysed the resulting patterns.We found that changes in the strength of atomic interactions and initial momentum can affect the dynamic evolution of the bubble-shaped Bose-Einstein condensates and their interference fringes.Notably,we have observed that when the initial momentum is sufficiently high,the thickness of the bubble-shaped Bose-Einstein condensate undergoes a counterintuitive thinning,which is a counterintuitive result that requires further investigation.Our findings are poised to advance our comprehension of the physical essence of bubble-shaped Bose-Einstein condensates and to facilitate the development of relevant experiments in microgravity environments. 展开更多
关键词 boson systems ultracold gases dynamic properties of condensates
下载PDF
The Complex Field Theory and Mass Formation—An Alternative Model to Higgs Mechanism
10
作者 Hossin Abdeldayem 《Journal of Modern Physics》 CAS 2023年第5期562-572,共11页
The electromagnetic force, strong nuclear force, weak nuclear force, and gravitational force are the four fundamental forces of nature. The Standard Model (SM) succeeded in combining the first three forces to describe... The electromagnetic force, strong nuclear force, weak nuclear force, and gravitational force are the four fundamental forces of nature. The Standard Model (SM) succeeded in combining the first three forces to describe the most basic building blocks of matter and govern the universe. Despite the model’s great success in resolving many issues in particle physics but still has several setbacks and limitations. The model failed to incorporate the fourth force of gravity. It infers that all fermions and bosons are massless contrary to experimental facts. In addition, the model addresses neither the 95% of the universe’s energy of Dark Matter (DM) and Dark Energy (DE) nor the universe’s expansion. The Complex Field Theory (CFT) identifies DM and DE as complex fields of complex masses and charges that encompasses the whole universe, and pervade all matter. This presumption resolves the issue of failing to detect DM and DE for the last five decades. The theory also presents a model for the universe’s expansion and presumes that every material object carries a fraction of this complex field proportional to its mass. These premises clearly explain the physical nature of the gravitational force and its complex field and pave the way for gravity into the SM. On the other hand, to solve the issue of massless bosons and fermions in the SM, Higgs mechanism introduces a pure and abstractive theoretical model of unimaginable four potentials to generate fictitious bosons as mass donors to fermions and W± and Z bosons. The CFT in this paper introduces, for the first time, a physical explanation to the mystery of the mass formation of particles rather than Higgs’ pure mathematical derivations. The analyses lead to uncovering the mystery of electron-positron production near heavy nuclei and never in a vacuum. In addition, it puts a constraint on Einstein’s mass-energy equation that energy can never be converted to mass without the presence of dense dark matter and cannot be true in a vacuum. Furthermore, CFT provides different perspectives and resolves real-world physics concepts such as the nuclear force, Casimir force, Lamb’s shift, and the anomalous magnetic moment to be published elsewhere. 展开更多
关键词 Quantum Field Theory Complex Field Theory Standard Model Higgs Mechanism BOSONS FERMIONS
下载PDF
A Novelty Solution to the Neutron Anomaly (An Anomalous Neutron or “Dark”?)
11
作者 Giovanni Guido Abele Bianchi 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2023年第1期353-378,共26页
To explain the anomaly (τ<sub>b</sub> ≠ τ<sub>f</sub>) of the neutron lifetime τ in some experiments, in “bottle” τ<sub>b</sub> and in “beam” τ<sub>f</sub>, we... To explain the anomaly (τ<sub>b</sub> ≠ τ<sub>f</sub>) of the neutron lifetime τ in some experiments, in “bottle” τ<sub>b</sub> and in “beam” τ<sub>f</sub>, we resort to an anomalous form of the neutron n<sub>a</sub>. This form belongs to one of two different states of the structure of the quark configurations making up the neutron (nucleon): first, an ordinary form Ψ<sub>o</sub>, while the second is an “anomalous” form Ψ<sub>a</sub>, difficult to detect and decay. If the ordinary configuration is present in everyone nuclear processes, to strong and weak interactions, and in diffusion processes, the anomalous form can emerge, in casual way and probabilistic, in some processes of fusion with production of neutrons and can be highlighted in some experiments as those in “bottle” and in “beam”, see the anomaly of the neutron lifetime. We show that the anomalous form Ψ<sub>a</sub> can be highlighted in the coupling between a dipoles’ lattice of virtual bosons W and the neutron (nucleon) because the neutron into anomalous configuration does not decays. Finally, we interpret the anomalous neutron as a “dark” neutron, presenting, so, the dark matter as an anomalous form of hadron matter. 展开更多
关键词 ANOMALY Anomalous Neutron Dark Neutron Geometric Structure Discrepancy Bosons’ Lattice Weak Decay
下载PDF
Mathematical Aspects of SU (2) and SO(3,R) Derived from Two-Mode Realization in Coordinate-Invariant Form
12
作者 Alfred Wünsche 《Journal of Modern Physics》 CAS 2023年第3期361-413,共53页
Some mathematical aspects of the Lie groups SU (2) and in realization by two pairs of boson annihilation and creation operators and in the parametrization by the vector parameter  instead of the Euler angles and ... Some mathematical aspects of the Lie groups SU (2) and in realization by two pairs of boson annihilation and creation operators and in the parametrization by the vector parameter  instead of the Euler angles and the vector parameter c of Fyodorov are developed. The one-dimensional root scheme of SU (2) is embedded in two-dimensional root schemes of some higher Lie groups, in particular, in inhomogeneous Lie groups and is represented in text and figures. The two-dimensional fundamental representation of SU (2) is calculated and from it the composition law for the product of two transformations and the most important decompositions of general transformations in special ones are derived. Then the transition from representation of SU (2) to of is made where in addition to the parametrization by vector  the convenient parametrization by vector c is considered and the connections are established. The measures for invariant integration are derived for and for SU (2) . The relations between 3D-rotations of a unit sphere to fractional linear transformations of a plane by stereographic projection are discussed. All derivations and representations are tried to make in coordinate-invariant way. 展开更多
关键词 Boson Operators Lie Algebra Root Diagram Invariant Integration Hamilton-Cayley Identity Cayley-Gibbs-Fyodorov Parametrization Composition Law Quaternion Stereographic Projection Fractional Linear Transformation
下载PDF
The Standard Model Theory [May Be] a Wrong Theory
13
作者 Vaggelis Talios 《Journal of High Energy Physics, Gravitation and Cosmology》 2023年第3期602-610,共9页
The Standard Model is the theory of Physics that describes the elementary particles of matter and the strong, weak and electromagnetic interactions, between them. The theory of the Standard Model does not include the ... The Standard Model is the theory of Physics that describes the elementary particles of matter and the strong, weak and electromagnetic interactions, between them. The theory of the Standard Model does not include the description of the gravitational interactions. It is a very well founded theory that has predicted many experimental results, such as the existence of many particles and has withstood many experimental tests. The key missing piece of the theory to fill in was the Higgs boson, whose existence was reasonably suspected and confirmed by CERN’s ATLAS and CMS experiments in 2012. The current synthesis of the theory was completed in the mid-1970s, after the experimental confirmation of the existence of the quarks, and then confirmed, with the discovery of the Higgs boson, in 2012. All these, are according to the established views of science. But according to the opinions of many scientists, opinions with which I as the author of this paper agree, the theory of the Standard Model is a wrong theory because, while it makes some successful predictions, it does not answer to a number of many other questions that it should answer for its final establishment. Specifically and according to established views, the theory cannot explain the existence of dark matter and dark energy, the behavior of neutrinos and the existence of particles with very different masses. It is also questionable whether the Higgs boson, discovered in the ATLAS experiment is actually the particle that contributes to the creation of the mass of the elementary particles of matter, and whether the Higgs mechanism is theoretically a correct mechanism. There is doubt if the interactions, actually be created by the exchange of bosons? If bosons are really exist? And not any convincing explanation is given by the theory, for the case that, the bosons exist as particles, where were they found? And how do they work? For replace, or fill the void will be left by the theory of the Standard Model, which I believe sooner or later will be renewed or retired, I propose a New Model that more convincingly describes the elementary components of matter and the interactions between them. The New Model also addresses all the weak points of the theory of the Standard Model, including the interaction of gravity. But the main feature of the New Model, which will surprise you! Is its reliability, correctness, logic and simplicity. But this is something you will judge after studying the New Model. 展开更多
关键词 Standard Model Elementary Particles Higgs Boson New Model INTERACTIONS
下载PDF
ETG Galaxies (<400 [My]) from JWST Already Predicted in 2019 from This Cosmological Model AΛΩ (Slow Bang Model, SB)
14
作者 Jean Perron 《Journal of High Energy Physics, Gravitation and Cosmology》 2023年第3期800-834,共35页
A model of the universe (preprint 2019), based on a quantum approach to the evolution of space-time as well as on an equation of state that retains all the infinitesimal terms, has made it possible to estimate a large... A model of the universe (preprint 2019), based on a quantum approach to the evolution of space-time as well as on an equation of state that retains all the infinitesimal terms, has made it possible to estimate a large number of parameters relating to the universe and in particular the estimation of a colossal phantom energy E<sub>Λ</sub> represented by the existence of a hidden photon &ycirc;present everywhere. This energy undergoes dilution in H<sup>4</sup> due to expansion of the universe. In order to introduce the effects of this energy on the curvature of space-time, we chose to express it by the cosmological constant Λ in the equation of the GR via the element tensor T<sup>00</sup>. This positive energy E<sub>Λ</sub> which acts as additional effect to gravity and we have expressed this energy in the form of an equation which expresses a so-called cosmological force F<sub>Λ</sub>. We estimated that this photon or hidden particle of spin 1 has an energy ~1 [meV] at our cosmic position t<sub>0</sub> which makes it an ultra-light axion ULA. Subsequently, with the action of this augmented force, especially in the first 400 [My] we were able to explain, in part, the rapid development of galaxy formation as seen by JWST as well as several observed dynamic behaviors of the barionic mass of some galaxies as MW, M33, UGC12591, NGC3198, UGC2885 and NGC253 whose observations raise questions and require additional explanations that led to the likely existence of unobserved matter called DM. However, it appears that this cosmological force makes it possible to explain several observations without the use of this DM. A first conclusion was drawn, namely the much earlier formation of galaxies by the action of this cosmological force coupled with gravity (GLASS z12). In addition, the model made it possible to explain the need or not to use the concept of DM for ETGs and LTGs by the more or less early and long period of the beginning of galaxy formation over a period ranging from ~170 to 1200 [My]. Thus, the model makes it possible to explain to a large extent the observations of the dynamics of the galaxies studied. However, several questions remain. 展开更多
关键词 Model of Universe ETG LTG UDG Cosmological Constant Hidden Photon Hidden Boson GLASS z12
下载PDF
The QCD Ground State Chiral Tetrahedron Symmetry
15
作者 Rami Rom 《Journal of High Energy Physics, Gravitation and Cosmology》 2023年第4期1161-1180,共20页
We propose that the exotic meson tetraquark u<sub>d</sub>~</sup>d&utilde;introduced in previous papers, may be a pseudo-Goldstone boson having a tetrahedron geometry and symmetry. The transition ... We propose that the exotic meson tetraquark u<sub>d</sub>~</sup>d&utilde;introduced in previous papers, may be a pseudo-Goldstone boson having a tetrahedron geometry and symmetry. The transition from the neutral pion superposition of two free mesons, d<sub>d</sub>~</sup> and u&utilde;, to the tetrahedron geometry with optional two chiral states may be the symmetry breaking of the QCD ground state. The u<sub>d</sub>~</sup>d&utilde;tetrahedron mass may be calculated by measuring the β decay rate variability. We assume that electrons and positrons are composite particle exotic tetraquarks, d&utilde;d<sub>d</sub>~</sup> for the electrons and u<sub>d</sub>~</sup>d<sub>d</sub>~</sup> for the positrons and confined by the strong force. We propose that the QCD tetrahedrons play a central role in electron pairing mechanism in both chemical bond forming and superconductor Cooper pairs. We propose a hypothesis where the QCD ground state tetrahedrons play a central role in low energy physics where quark exchange reactions between particles and the QCD tetrahedrons via gluon junctions transfer all the forces. The QCD ground state u<sub>d</sub>~</sup>d&utilde;tetrahedrons hypothesis provides a symmetry breaking and a mass gap may be created by the ground state QCD tetrahedrons Bose-Einstein condensate. 展开更多
关键词 QCD Vacuum Pseudo-Goldstone Boson Bose Einstein Condensate (BEC) Lattice QCD Gluon Junctions Tetrahedrons Cooper Pairs Isotope Effect Superconductor Dirac Equation Klein Paradox Cosmic Web Voids Doppler Redshift Black Hole Laser
下载PDF
A New Interpretation of the Higgs Vacuum Potential Energy Based on a Planckion Composite Model for the Higgs
16
作者 Christopher Pilot 《Journal of High Energy Physics, Gravitation and Cosmology》 2023年第3期666-683,共18页
We present a new interpretation of the Higgs field as a composite particle made up of a positive, with, a negative mass Planck particle. According to the Winterberg hypothesis, space, i.e., the vacuum, consists of bot... We present a new interpretation of the Higgs field as a composite particle made up of a positive, with, a negative mass Planck particle. According to the Winterberg hypothesis, space, i.e., the vacuum, consists of both positive and negative physical massive particles, which he called planckions, interacting through strong superfluid forces. In our composite model for the Higgs boson, there is an intrinsic length scale associated with the vacuum, different from the one introduced by Winterberg, where, when the vacuum is in a perfectly balanced state, the number density of positive Planck particles equals the number density of negative Planck particles. Due to the mass compensating effect, the vacuum thus appears massless, chargeless, without pressure, energy density, or entropy. However, a situation can arise where there is an effective mass density imbalance due to the two species of Planck particle not matching in terms of populations, within their respective excited energy states. This does not require the physical addition or removal of either positive or negative Planck particles, within a given region of space, as originally thought. Ordinary matter, dark matter, and dark energy can thus be given a new interpretation as residual vacuum energies within the context of a greater vacuum, where the populations of the positive and negative energy states exactly balance. In the present epoch, it is estimated that the dark energy number density imbalance amounts to, , per cubic meter, when cosmic distance scales in excess of, 100 Mpc, are considered. Compared to a strictly balanced vacuum, where we estimate that the positive, and the negative Planck number density, is of the order, 7.85E54 particles per cubic meter, the above is a very small perturbation. This slight imbalance, we argue, would dramatically alleviate, if not altogether eliminate, the long standing cosmological constant problem. 展开更多
关键词 Winterberg Model Planck Particles Positive and Negative Mass Planck Particles Planckions Quantum Vacuum Space as a Superfluid/Supersolid Extended Models for Space Cosmological Constant Higgs Field as a Composite Particle Higgs Boson Inherent Length Scale for the Vacuum Dark Energy
下载PDF
On the Cosmic Evolution of the Quantum Vacuum Using Two Variable G Models and Winterberg’s Thesis
17
作者 Christopher Pilot 《Journal of High Energy Physics, Gravitation and Cosmology》 2023年第4期1134-1160,共27页
We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckion... We work within a Winterberg framework where space, i.e., the vacuum, consists of a two component superfluid/super-solid made up of a vast assembly (sea) of positive and negative mass Planck particles, called planckions. These material particles interact indirectly, and have very strong restoring forces keeping them a finite distance apart from each other within their respective species. Because of their mass compensating effect, the vacuum appears massless, charge-less, without pressure, net energy density or entropy. In addition, we consider two varying G models, where G, is Newton’s constant, and G<sup>-1</sup>, increases with an increase in cosmological time. We argue that there are at least two competing models for the quantum vacuum within such a framework. The first follows a strict extension of Winterberg’s model. This leads to nonsensible results, if G increases, going back in cosmological time, as the length scale inherent in such a model will not scale properly. The second model introduces a different length scale, which does scale properly, but keeps the mass of the Planck particle as, ± the Planck mass. Moreover we establish a connection between ordinary matter, dark matter, and dark energy, where all three mass densities within the Friedman equation must be interpreted as residual vacuum energies, which only surface, once aggregate matter has formed, at relatively low CMB temperatures. The symmetry of the vacuum will be shown to be broken, because of the different scaling laws, beginning with the formation of elementary particles. Much like waves on an ocean where positive and negative planckion mass densities effectively cancel each other out and form a zero vacuum energy density/zero vacuum pressure surface, these positive mass densities are very small perturbations (anomalies) about the mean. This greatly alleviates, i.e., minimizes the cosmological constant problem, a long standing problem associated with the vacuum. 展开更多
关键词 Winterberg Model Planck Particles Positive and Negative Mass Planck Particles Planckions Quantum Vacuum Space as a Superfluid/Supersolid Extended Models for Space Cosmological Constant Higgs Field as a Composite Particle Higgs Boson Inherent Length Scale for the Vacuum Dark Energy Cosmological Scaling Behavior for the Quantum Vacuum Variable G Models Extended Gravity Newton’s Constant as an Order Parameter High Energy Behavior for the Vacuum
下载PDF
基于虚拟技术的计算机实验教学 被引量:20
18
作者 何增颖 陈建锐 《实验技术与管理》 CAS 北大核心 2012年第1期79-82,共4页
介绍了虚拟机、Boson Netsim实验模拟器及NS2仿真软件的技术特点,利用这3种虚拟技术构建虚拟实验环境,探讨其在计算机课程实验中的具体应用,总结了优点和对计算机课程的实验教学意义。
关键词 虚拟机 实验教学 BOSON Netsim NS2
下载PDF
基于Boson Netsim虚拟平台的vlan实验教学设计 被引量:11
19
作者 米伟娜 王海燕 徐建东 《现代教育技术》 CSSCI 2008年第10期121-124,共4页
vlan的划分是计算机网络技术课程实验教学的重难点内容之一,文章中利用Boson Netsim软件提供的虚拟平台对同网段内vlan的划分及跨网段间vlan的互访两类实验进行了教学设计。
关键词 BOSON Netsim VLAN 实验教学设计
下载PDF
基于Boson NetSim的模拟网络环境在网络配置中的应用 被引量:2
20
作者 蒋宁 刘祖根 +1 位作者 于涧 杨雪华 《沈阳师范大学学报(自然科学版)》 CAS 2010年第4期574-576,共3页
计算机网络实验可以将实际的网络环境和模拟的网络环境相结合。模拟的网络环境中使用模拟软件Boson NetSim。以配置静态VLAN为例,在网络配置中应用了实际网络环境和Boson Netsim的模拟网络环境。首先在实际网络环境中的单交换机上对VLA... 计算机网络实验可以将实际的网络环境和模拟的网络环境相结合。模拟的网络环境中使用模拟软件Boson NetSim。以配置静态VLAN为例,在网络配置中应用了实际网络环境和Boson Netsim的模拟网络环境。首先在实际网络环境中的单交换机上对VLAN进行了简单配置,然后在模拟网络环境中的2台交换机进行了跨交换机VLAN的复杂配置。后者能够让学生获得直观的拓扑图,验证实验的结果也更加方便。通过构建基于Boson Netsim的模拟网络环境,学生能够更加高效地进行网络的配置。 展开更多
关键词 BOSON NetSim 模拟软件 VLAN配置
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部