Nitrogenation of SmFelolVIo2 powders was performed in a self-made furnace under a high-purity N2 atmo- sphere up to 40 MPa at 500 ℃. Upon nitrogenation at atmospheric pressure, the lattice parameters a and c increase...Nitrogenation of SmFelolVIo2 powders was performed in a self-made furnace under a high-purity N2 atmo- sphere up to 40 MPa at 500 ℃. Upon nitrogenation at atmospheric pressure, the lattice parameters a and c increase by 0.5% and 2.7%, respectively, whereas the Curie temperature Tc increases from 519 to 633 K. With further increasing the nitrogenation pressure to 20 and 40 MPa, the 1:12 main phase starts to decompose and a large amount of Mo and a-Fe precipitates. This leads to variation of Mo concentration in the 1:12 phase and causes a sharp decrease in Tc and in the coercivity. The relative complex permittivity and permeability of paraffin-SmFeloMO2 composites show multi-resonant behavior. After nitrogenation, the magnetic loss of the powders decreases, which may originate from the influence of eddy currents due to the increase in the particle size.展开更多
目的:探索尿锰检测的新方法。方法:采用原子吸收火焰法直接测定,同时在样品消化时采用了浓氨水沉淀,又用250 m l凯氏氮瓶消化法。结果:回收率:90.0%~99.5%;相对标准偏差为2.4%;方法检出限为0.0190 mg/L。结论:该法样品消化简单,...目的:探索尿锰检测的新方法。方法:采用原子吸收火焰法直接测定,同时在样品消化时采用了浓氨水沉淀,又用250 m l凯氏氮瓶消化法。结果:回收率:90.0%~99.5%;相对标准偏差为2.4%;方法检出限为0.0190 mg/L。结论:该法样品消化简单,回收率高,适宜大批量样品检测。展开更多
The tight tuff reservoir is an unusual type of unconventional reservoir with strong heterogeneity.However,there is a lack of research on the microscopic pore structure that causes the heterogeneity of tuff reservoirs....The tight tuff reservoir is an unusual type of unconventional reservoir with strong heterogeneity.However,there is a lack of research on the microscopic pore structure that causes the heterogeneity of tuff reservoirs.Using the Chang 7 Formation in Ordos Basin,China as a case study,carbon-dioxide gas adsorption,nitrogen gas adsorption and high-pressure mercury injection are integrated to investigate the multi-scale pore structure characteristics of tuff reservoirs.Meanwhile,the fractal dimension is introduced to characterize the complexity of pore structure in tuff reservoirs.By this multi-experimental method,the quantitative characterizations of the full-range pore size distribution of four tuff types were obtained and compared in the size ranges of micropores,mesopores and macropores.Fractal dimension curves derived from full-range pores are divided into six segments as D1,D2,D3,D4,D5 and D6 corresponding to fractal characteristics of micropores,smaller mesopores,larger mesopores,smaller macropores,medium macropores and larger macropores,respectively.The macropore volume,average macropore radius and fractal dimension D5 significantly control petrophysical properties.The larger macropore volume,average macropore radius and D5 correspond to favorable pore structure and good reservoir quality,which provides new indexes for the tuff reservoir evaluation.This study enriches the understanding of the heterogeneity of pore structures and contributes to unconventional oil and gas exploration and development.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51261001)Liaoning Provincial Natural Science Foundation (No. 2013020105)Shenyang Science and Technology Foundation (No. F13-316-139)
文摘Nitrogenation of SmFelolVIo2 powders was performed in a self-made furnace under a high-purity N2 atmo- sphere up to 40 MPa at 500 ℃. Upon nitrogenation at atmospheric pressure, the lattice parameters a and c increase by 0.5% and 2.7%, respectively, whereas the Curie temperature Tc increases from 519 to 633 K. With further increasing the nitrogenation pressure to 20 and 40 MPa, the 1:12 main phase starts to decompose and a large amount of Mo and a-Fe precipitates. This leads to variation of Mo concentration in the 1:12 phase and causes a sharp decrease in Tc and in the coercivity. The relative complex permittivity and permeability of paraffin-SmFeloMO2 composites show multi-resonant behavior. After nitrogenation, the magnetic loss of the powders decreases, which may originate from the influence of eddy currents due to the increase in the particle size.
基金supported by the Strategic Cooperation Technology Projects of CNPC and CUPB(No.ZLZX2020-02)the National Science and Technology Special(No.2017ZX05049-006-001)+1 种基金the National Natural Science Foundation of China(No.41602137)Science Foundation of China University of Petroleum,Beijing(No.2462020YXZZ022).
文摘The tight tuff reservoir is an unusual type of unconventional reservoir with strong heterogeneity.However,there is a lack of research on the microscopic pore structure that causes the heterogeneity of tuff reservoirs.Using the Chang 7 Formation in Ordos Basin,China as a case study,carbon-dioxide gas adsorption,nitrogen gas adsorption and high-pressure mercury injection are integrated to investigate the multi-scale pore structure characteristics of tuff reservoirs.Meanwhile,the fractal dimension is introduced to characterize the complexity of pore structure in tuff reservoirs.By this multi-experimental method,the quantitative characterizations of the full-range pore size distribution of four tuff types were obtained and compared in the size ranges of micropores,mesopores and macropores.Fractal dimension curves derived from full-range pores are divided into six segments as D1,D2,D3,D4,D5 and D6 corresponding to fractal characteristics of micropores,smaller mesopores,larger mesopores,smaller macropores,medium macropores and larger macropores,respectively.The macropore volume,average macropore radius and fractal dimension D5 significantly control petrophysical properties.The larger macropore volume,average macropore radius and D5 correspond to favorable pore structure and good reservoir quality,which provides new indexes for the tuff reservoir evaluation.This study enriches the understanding of the heterogeneity of pore structures and contributes to unconventional oil and gas exploration and development.