The interaction of oblique incident water waves with a small bottom deformation on a porous ocean-bed is examined analytically here within the framework of linear water wave theory. The upper surface of the ocean is a...The interaction of oblique incident water waves with a small bottom deformation on a porous ocean-bed is examined analytically here within the framework of linear water wave theory. The upper surface of the ocean is assumed to be covered by an infinitely extended thin uniform elastic plate, while the lower surface is bounded by a porous bottom surface having a small deformation. By employing a simplified perturbation analysis, involving a small parameter c^(〈〈l ), which measures the smallness of the deformation, the governing Boundary Value Problem (BVP) is reduced to a simpler BVP for the first-order correction of the potential function. This BVP is solved using a method based on Green's integral theorem with the introduction of suitable Green's function to obtain the first-order potential, and this potential function is then utilized to calculate the first-order reflection and transmission coefficients in terms of integrals involving the shape function c(x) representing the bottom deformation. Consideration of a patch of sinusoidal ripples shows that when the quotient of twice the component of the incident field wave number propagating just below the elastic plate and the ripple wave number approaches one, the theory predicts a resonant interaction between the bed and the surface below the elastic plate. Again, for small angles of incidence, the reflected wave energy is more as compared to the other angles of incidence. It is also observed that the reflected wave energy is somewhat sensitive to the changes in the flexural rigidity of the elastic plate, the porosity of the bed and the ripple wave numbers. The main advantage of the present study is that the results for the values of reflection and transmission coefficients obtained are found to satisfy the energy-balance relation almost accurately.展开更多
The scattering of oblique incident surface waves by the edge of a small cylindrical deformation on a porous bed in an ocean of finite depth, is investigated here within the framework of linearized water wave theory. U...The scattering of oblique incident surface waves by the edge of a small cylindrical deformation on a porous bed in an ocean of finite depth, is investigated here within the framework of linearized water wave theory. Using perturbation analysis, the corresponding problem governed by modified Helmholtz equation is reduced to a boundary value problem for the first-order correction of the potential function. The first-order potential and, hence, the reflection and transmission coefficients are obtained by a method based on Green's integral theorem with the introduction of appropriate Green's function. Consideration of a patch of sinusoidal ripples shows that when the quotient of twice the component of the incident field wave number along x-direction and the ripple wave number approaches one, the theory predicts a resonant interaction between the bed and the free-surface, and the reflection coefficient becomes a multiple of the number of ripples. Again, for small angles of incidence, the reflected energy is more as compared to the other angles of incidence. It is also observed that the reflected energy is somewhat sensitive to the changes in the porosity of the ocean bed. From the derived results, the solutions for problems with impermeable ocean bed can be obtained as particular cases.展开更多
The solution of water wave scattering problem involving small deformation on a porous bed in a channel, where the upper surface is bounded above by an infinitely extent rigid horizontal surface, is studied here within...The solution of water wave scattering problem involving small deformation on a porous bed in a channel, where the upper surface is bounded above by an infinitely extent rigid horizontal surface, is studied here within the framework of linearized water wave theory. In such a situation, there exists only one mode of waves propagating on the porous surface. A simplified perturbation analysis, involving a small parameter ε (≤1) , which measures the smallness of the deformation, is employed to reduce the governing Boundary Value Problem (BVP) to a simpler BVP for the first-order correction of the potential function. The first-order potential function and, hence, the first-order reflection and transmission coefficients are obtained by the method based on Fourier transform technique as well as Green's integral theorem with the introduction of appropriate Green's function. Two special examples of bottom deformation: the exponentially damped deformation and the sinusoidal ripple bed, are considered to validate the results. For the particular example of a patch of sinusoidal ripples, the resonant interaction between the bed and the upper surface of the fluid is attained in the neighborhood of a singularity, when the ripples wavenumbers of the bottom deformation become approximately twice the components of the incident field wavenumber along the positive x -direction. Also, the main advantage of the present study is that the results for the values of reflection and transmission coefficients are found to satisfy the energy-balance relation almost accurately.展开更多
基金Partially Supported by a Research from Department of Science and Technology(DST),India under Grant No.SB/FTP/MS-003/2013
文摘The interaction of oblique incident water waves with a small bottom deformation on a porous ocean-bed is examined analytically here within the framework of linear water wave theory. The upper surface of the ocean is assumed to be covered by an infinitely extended thin uniform elastic plate, while the lower surface is bounded by a porous bottom surface having a small deformation. By employing a simplified perturbation analysis, involving a small parameter c^(〈〈l ), which measures the smallness of the deformation, the governing Boundary Value Problem (BVP) is reduced to a simpler BVP for the first-order correction of the potential function. This BVP is solved using a method based on Green's integral theorem with the introduction of suitable Green's function to obtain the first-order potential, and this potential function is then utilized to calculate the first-order reflection and transmission coefficients in terms of integrals involving the shape function c(x) representing the bottom deformation. Consideration of a patch of sinusoidal ripples shows that when the quotient of twice the component of the incident field wave number propagating just below the elastic plate and the ripple wave number approaches one, the theory predicts a resonant interaction between the bed and the surface below the elastic plate. Again, for small angles of incidence, the reflected wave energy is more as compared to the other angles of incidence. It is also observed that the reflected wave energy is somewhat sensitive to the changes in the flexural rigidity of the elastic plate, the porosity of the bed and the ripple wave numbers. The main advantage of the present study is that the results for the values of reflection and transmission coefficients obtained are found to satisfy the energy-balance relation almost accurately.
基金partially supported by a research grant from Department of Science and Technology(DST),India(No.SB/FTP/MS-003/2013)
文摘The scattering of oblique incident surface waves by the edge of a small cylindrical deformation on a porous bed in an ocean of finite depth, is investigated here within the framework of linearized water wave theory. Using perturbation analysis, the corresponding problem governed by modified Helmholtz equation is reduced to a boundary value problem for the first-order correction of the potential function. The first-order potential and, hence, the reflection and transmission coefficients are obtained by a method based on Green's integral theorem with the introduction of appropriate Green's function. Consideration of a patch of sinusoidal ripples shows that when the quotient of twice the component of the incident field wave number along x-direction and the ripple wave number approaches one, the theory predicts a resonant interaction between the bed and the free-surface, and the reflection coefficient becomes a multiple of the number of ripples. Again, for small angles of incidence, the reflected energy is more as compared to the other angles of incidence. It is also observed that the reflected energy is somewhat sensitive to the changes in the porosity of the ocean bed. From the derived results, the solutions for problems with impermeable ocean bed can be obtained as particular cases.
基金Partially supported by a research grant from Department of Science and Technology(DST),India(No.SB/FTP/MS-003/2013)
文摘The solution of water wave scattering problem involving small deformation on a porous bed in a channel, where the upper surface is bounded above by an infinitely extent rigid horizontal surface, is studied here within the framework of linearized water wave theory. In such a situation, there exists only one mode of waves propagating on the porous surface. A simplified perturbation analysis, involving a small parameter ε (≤1) , which measures the smallness of the deformation, is employed to reduce the governing Boundary Value Problem (BVP) to a simpler BVP for the first-order correction of the potential function. The first-order potential function and, hence, the first-order reflection and transmission coefficients are obtained by the method based on Fourier transform technique as well as Green's integral theorem with the introduction of appropriate Green's function. Two special examples of bottom deformation: the exponentially damped deformation and the sinusoidal ripple bed, are considered to validate the results. For the particular example of a patch of sinusoidal ripples, the resonant interaction between the bed and the upper surface of the fluid is attained in the neighborhood of a singularity, when the ripples wavenumbers of the bottom deformation become approximately twice the components of the incident field wavenumber along the positive x -direction. Also, the main advantage of the present study is that the results for the values of reflection and transmission coefficients are found to satisfy the energy-balance relation almost accurately.