Despite the developments of sectors which aim at valorizing recyclable materials, landfills remain essential in integrated waste management. The construction of such infrastructures is an engineering challenge that mu...Despite the developments of sectors which aim at valorizing recyclable materials, landfills remain essential in integrated waste management. The construction of such infrastructures is an engineering challenge that must be proven over the long term. The purpose of this study is to understand the modification of the hydromechanical properties of bottom liners of landfills that may occur during their exploitation under leachate action. To do so, on the basis of its parameters of nature, a swelling clay from Burkina Faso is selected from soils of seven localities in Burkina Faso (West Africa). Laboratory tests carried out with distilled water and then with a young synthetic leachate show a degradation of the permeability of this clay from 2.42 × 10^-10 m/s to 1.01 × 10^-9 m/s. In addition, leachate leads to an inhibition of the swelling and a remarkable increase of its compressibility, inducing significant settlement. With the increase in permeability, the primary consolidation settlement is increasing faster. Changes in the hydromechanical behavior can be attributed to the clays mineralogy, mainly cation exchange and the development of the diffuse double layer.展开更多
文摘Despite the developments of sectors which aim at valorizing recyclable materials, landfills remain essential in integrated waste management. The construction of such infrastructures is an engineering challenge that must be proven over the long term. The purpose of this study is to understand the modification of the hydromechanical properties of bottom liners of landfills that may occur during their exploitation under leachate action. To do so, on the basis of its parameters of nature, a swelling clay from Burkina Faso is selected from soils of seven localities in Burkina Faso (West Africa). Laboratory tests carried out with distilled water and then with a young synthetic leachate show a degradation of the permeability of this clay from 2.42 × 10^-10 m/s to 1.01 × 10^-9 m/s. In addition, leachate leads to an inhibition of the swelling and a remarkable increase of its compressibility, inducing significant settlement. With the increase in permeability, the primary consolidation settlement is increasing faster. Changes in the hydromechanical behavior can be attributed to the clays mineralogy, mainly cation exchange and the development of the diffuse double layer.