L2 reading is not only an important channel for people to obtain information and knowledge,but also the main way for people to learn a foreign language.Reading information processing can be divided into controlled pro...L2 reading is not only an important channel for people to obtain information and knowledge,but also the main way for people to learn a foreign language.Reading information processing can be divided into controlled processing and automatic processing.Controlled information processing is a conscious and resource-intensive processing model,while automatic information processing is an unconscious and automatic processing model.This study investigates the characteristics and interactivity of controlled and automatic information processing in L2 reading,and explores the roles of controlled and automatic information processing strategies in improving L2 reading ability.The findings are as follows:(a)controlled and automatic information processing is interactive in L2 reading;and(b)the uses of controlled and automatic information processing strategies are beneficial to the improvement of the reading ability of L2 learners.This study has important theoretical and practical value in improving the efficiency of L2 reading teaching and learning.展开更多
Aim To develop an information processing system with real time processing capability and artistic user interface for the optoelectronic antagonism general measuring system. Methods The A/D board and the multifun...Aim To develop an information processing system with real time processing capability and artistic user interface for the optoelectronic antagonism general measuring system. Methods The A/D board and the multifunctional board communicating with every instruments were designed, data collecting and processing were realized by selecting appropriate software platform. Results Simulating results show the information processing system can operate correctly and dependably, the measuring rules, interactive interface and data handling method were all accepted by the user. Conclusion The designing approach based on the mix platform takes advantages of the two operating systems, the desired performances are acquired both in the real time processing and with the friendly artistic user interface.展开更多
In a measurement system, new representation methods are necessary to maintain the uncertainty and to supply more powerful ability for reasoning and transformation between numerical system and symbolic system. A grey m...In a measurement system, new representation methods are necessary to maintain the uncertainty and to supply more powerful ability for reasoning and transformation between numerical system and symbolic system. A grey measurement system is discussed from the point of view of intelligent sensors and incomplete information processing compared with a numerical and symbolized measurement system. The methods of grey representation and information processing are proposed for data collection and reasoning. As a case study, multi-ultrasonic sensor systems are demonstrated to verify the effectiveness of the proposed methods.展开更多
Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is di...Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is difficult to use the traditional probability theory to process the samples and assess the degree of uncertainty. Using the grey relational theory and the norm theory, the grey distance information approach, which is based on the grey distance information quantity of a sample and the average grey distance information quantity of the samples, is proposed in this article. The definitions of the grey distance information quantity of a sample and the average grey distance information quantity of the samples, with their characteristics and algorithms, are introduced. The correlative problems, including the algorithm of estimated value, the standard deviation, and the acceptance and rejection criteria of the samples and estimated results, are also proposed. Moreover, the information whitening ratio is introduced to select the weight algorithm and to compare the different samples. Several examples are given to demonstrate the application of the proposed approach. The examples show that the proposed approach, which has no demand for the probability distribution of small samples, is feasible and effective.展开更多
Nitrogen-vacancy (NV) center in diamond is one of the most promising candidates to implement room temperature quantum computing. In this review, we briefly discuss the working principles and recent experimental prog...Nitrogen-vacancy (NV) center in diamond is one of the most promising candidates to implement room temperature quantum computing. In this review, we briefly discuss the working principles and recent experimental progresses of this spin qubit. These results focus on understanding and prolonging center spin coherence, steering and probing spin states with dedicated quantum control techniques, and exploiting the quantum nature of these multi-spin systems, such as superposition and entanglement, to demonstrate the superiority of quantum information processing. Those techniques also stimulate the fast development of NV-based quantum sensing, which is an interdisciplinary field with great potential applications.展开更多
Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amo...Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amongthem, the hybrid network system architecture which is thedistributed configuration combining with the centralized cognition and its soft/hardware framework with the sense-detectionintegration are proposed, and the information processing framebased on the lens principle and its information processing flowwith receive-transmit joint adaption are designed, which buildand parse the work law for cognition and its self feedback adjustment with the lens focus model and five stages informationprocessing sequence. After that, the system simulation andthe performance analysis and comparison are provided, whichinitially proves the rationality and advantages of the proposedideas. Finally, four important development ideas of futureSWOTHR toward "high frequency intelligence information processing system" are discussed, which are scene information fusion, dynamic reconfigurable system, hierarchical and modulardesign, and sustainable development. Then the conclusion thatthe cognitive SWOTHR can cause the performance improvement is gotten.展开更多
Radar is an electronic device that uses radio waves to determine the range, angle, or velocity of objects. Real-time signal and information processor is an important module for real-time positioning, imaging, detectio...Radar is an electronic device that uses radio waves to determine the range, angle, or velocity of objects. Real-time signal and information processor is an important module for real-time positioning, imaging, detection and recognition of targets. With the development of ultra-wideband technology, synthetic aperture technology, signal and information processing technology, the radar coverage, detection accuracy and resolution have been greatly improved, especially in terms of one-dimensional(1D) high-resolution radar detection, tracking, recognition, and two-dimensional(2D) synthetic aperture radar imaging technology. Meanwhile, for the application of radar detection and remote sensing with high resolution and wide swath, the amount of data has been greatly increased. Therefore, the radar is required to have low-latency and real-time processing capability under the constraints of size, weight and power consumption. This paper systematically introduces the new technology of high resolution radar and real-time signal and information processing. The key problems and solutions are discussed, including the detection and tracking of 1D high-resolution radar, the accurate signal modeling and wide-swath imaging for geosynchronous orbit synthetic aperture radar, and real-time signal and information processing architecture and efficient algorithms. Finally, the latest research progress and representative results are presented, and the development trends are prospected.展开更多
We investigate a planar ion chip design with a two-dimensional array of linear ion traps for scalable quantum information processing. Qubits are formed from the internal electronic states of trapped ^40Ca^+ ions. The...We investigate a planar ion chip design with a two-dimensional array of linear ion traps for scalable quantum information processing. Qubits are formed from the internal electronic states of trapped ^40Ca^+ ions. The segmented electrodes reside in a single plane on a substrate and a grounded metal plate separately, a combination of appropriate rf and DC potentials is applied to them for stable ion confinement. Every two adjacent electrodes can generate a linear ion trap in and between the electrodes above the chip at a distance dependent on the geometrical scale and other considerations. The potential distributions are calculated by using a static electric field qualitatively. This architecture provides a conceptually simple avenue to achieving the microfabrication and large-scale quantum computation based on the arrays of trapped ions.展开更多
In order to study the problem of intelligent information processing in new types of imaging fuze, the method of extracting the invariance features of target images is adopted, and radial basis function neural network ...In order to study the problem of intelligent information processing in new types of imaging fuze, the method of extracting the invariance features of target images is adopted, and radial basis function neural network is used to recognize targets. Owing to its ability of parallel processing, its robustness and generalization, the method can realize the recognition of the conditions of missile-target encounters, and meet the requirements of real-time recognition in the imaging fuze. It is shown that based on artificial neural network target recognition and burst point control are feasible.展开更多
Oil monitoring and vibration monitoring are two principal techniques for mechanical fault diagnosis and condition monitoring at present. They monitor the mechanical condition by different approaches, nevertheless, oil...Oil monitoring and vibration monitoring are two principal techniques for mechanical fault diagnosis and condition monitoring at present. They monitor the mechanical condition by different approaches, nevertheless, oil and vibration monitoring are related in information collecting and processing. In the same mechanical system, the information obtained from the same information source can be described with the same expression form. The expressions are constituted of a structure matrix, a relative matrix and a system matrix. For oil and vibration monitoring, the information source is correlation and the collection is independent and complementary. And oil monitoring and vibration monitoring have the same process method when they yield their information. This research has provided a reasonable and useful approach to combine oil monitoring and vibration monitoring.展开更多
Quantum information processing is an active cross-disciplinary field drawing upon theoretical and experimental physics, computer science, engineering, mathematics, and material science. Its scope ranges from fundament...Quantum information processing is an active cross-disciplinary field drawing upon theoretical and experimental physics, computer science, engineering, mathematics, and material science. Its scope ranges from fundamental issues in quantum physics to prospective commercial exploitation by the computing and communications industries.展开更多
Background: This work aims at investigating the histology of hippocampus formation as structural model of information processing. The study addressed the question whether the pattern of cellular type distribution with...Background: This work aims at investigating the histology of hippocampus formation as structural model of information processing. The study addressed the question whether the pattern of cellular type distribution within hippocampal fields could be used as support of information processing in the hippocampus. Method: Pyramidal-shaped neurons presenting both cytoplasm and nucleus outlined clearly were measured systematically on brain slides, using a light microscope connected to a microcomputer equipped with a scanner software for measuring particles. Morphological types of cells were identified following class sizes and their distribution determined through hippocampal fields. Results: A battery of statistical tests: Sturges’ classification, class sizes distribution around overall mean, Bartlett’s sphericity test, principal components analysis (PCA) followed by correlations matrix analysis and ANOVA allowed two cellular groups to be identified in the hippocampus: large and small pyramidal-shaped cells. Conclusion: The results show that sensory information processing in the hippocampus could be built on two classes of pyramidal neurons that differed anatomically with probably different physiological functions. The study suggests combination ensembles clustering large and small pyramidal cells at different rates, as fundamental signaling units of the hippocampus.展开更多
Temporal information processing in the range of tens to hundreds of milliseconds is critical in many forms of sensory and motor tasks. However, little has been known about the neural mechanisms of temporal information...Temporal information processing in the range of tens to hundreds of milliseconds is critical in many forms of sensory and motor tasks. However, little has been known about the neural mechanisms of temporal information processing. Experimental observations indicate that sensory neurons of the nervous system do not show selective response to temporal properties of external stimuli. On the other hand, temporal selective neurons in the cortex have been reported in many species. Thus, processes which realize the temporal-to-spatial transformation of neuronal activities might be required for temporal information processing. In the present study, we propose a computational model to explore possible roles of electrical synapses in processing the duration of external stimuli. Firstly, we construct a small-scale network with neurons interconnected by electrical synapses in addition to chemical synapses. Basic properties of this small-scale neural network in processing duration information are analyzed. Secondly, a large-scale neural network which is more biologically realistic is further explored. Our results suggest that neural networks with electrical synapses functioning together with chemical synapses can effectively work for the temporal-to-spatial transformation of neuronal activities, and the spatially distributed sequential neural activities can potentially represent temporal information.展开更多
Mutual information (MI)-based image registration is effective in registering medical images, but it is computationally expensive. This paper accelerates MI-based image registration by dividing computation of mutual ...Mutual information (MI)-based image registration is effective in registering medical images, but it is computationally expensive. This paper accelerates MI-based image registration by dividing computation of mutual information into spatial transformation and histogram-based calculation, and performing 3D spatial transformation and trilinear interpolation on graphic processing unit (GPU). The 3D floating image is downloaded to GPU as flat 3D texture, and then fetched and interpolated for each new voxel location in fragment shader. The transformed resuits are rendered to textures by using frame buffer object (FBO) extension, and then read to the main memory used for the remaining computation on CPU. Experimental results show that GPU-accelerated method can achieve speedup about an order of magnitude with better registration result compared with the software implementation on a single-core CPU.展开更多
September 10 ~12 ,2008,Lyon,France The IIP conference series provides aforumfor engineers andscientistsin academia,university andindustryto present theirlatest researchfindings in any aspects of intelligent informatio...September 10 ~12 ,2008,Lyon,France The IIP conference series provides aforumfor engineers andscientistsin academia,university andindustryto present theirlatest researchfindings in any aspects of intelligent information processing.This ti me , we especially encourage papers on Knowledge Discovery , Knowledge Management ,Intelligent Agents , Machine Learning, Autonomic Reasoning etc.We also welcome papers that highlight successful modern applications of IIP,such as Biomedicine ,Bioinformatics ,e-Services ,e-Learning, Business Intelligence.IIP2008 attempts to meet the needs of a large and diverse community.展开更多
Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biolo...Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biological unit in response to pulsatile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculate the mutual information, energy cost, and energy efficiency of an array of these bistable units. We find that the optimal number of units could maximize this array's energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection.展开更多
The development o f the network technology, and especially the web search engine, has brought great changes to the field of the English translation. Translators can acquire the background information of the translated...The development o f the network technology, and especially the web search engine, has brought great changes to the field of the English translation. Translators can acquire the background information of the translated texts by using the web search engine correctly, inquire about the correct translation methods of the rare professional terms, apply the fixed sentence patterns, and check the correctness of the translation, so as to improve the translation speed and quality.展开更多
It is acknowledged that lacking of interdisciplinary communication amongst designers can result in poor coordination performance in building design. Viewing communication as information processing activity, this paper...It is acknowledged that lacking of interdisciplinary communication amongst designers can result in poor coordination performance in building design. Viewing communication as information processing activity, this paper aims to explore the relationship between interdisciplinary information processing (IP) and design coordination performance. Both amount and quality are concerned regarding information processing. 698 project based samples are collected by questionnaire survey from design institutes in China's Mainland. Statistical data analysis shows that the relationship between information processing amount and design coordination performance follows a nonlinear exponential expression: performance = 3.691 (1-0.235IP amount) rather than reverted U curve. It implies that design period is too short to allow information overload. It indicates that the main problem in interdisciplinary communication in design institute in China is insufficient information. In additional, it is found the correlation between IP quality and coordination process performance is much stronger than that between IP amount and coordination process performance. For practitioners, it reminds design mangers to pay more attention to information processing quality rather than amount.展开更多
Using Gagne's information processing theory to analyze the listening process so as to provide a pedagogical model for L2 learners to solve listening problems as well as to cast some lights on listening teaching.
文摘L2 reading is not only an important channel for people to obtain information and knowledge,but also the main way for people to learn a foreign language.Reading information processing can be divided into controlled processing and automatic processing.Controlled information processing is a conscious and resource-intensive processing model,while automatic information processing is an unconscious and automatic processing model.This study investigates the characteristics and interactivity of controlled and automatic information processing in L2 reading,and explores the roles of controlled and automatic information processing strategies in improving L2 reading ability.The findings are as follows:(a)controlled and automatic information processing is interactive in L2 reading;and(b)the uses of controlled and automatic information processing strategies are beneficial to the improvement of the reading ability of L2 learners.This study has important theoretical and practical value in improving the efficiency of L2 reading teaching and learning.
文摘Aim To develop an information processing system with real time processing capability and artistic user interface for the optoelectronic antagonism general measuring system. Methods The A/D board and the multifunctional board communicating with every instruments were designed, data collecting and processing were realized by selecting appropriate software platform. Results Simulating results show the information processing system can operate correctly and dependably, the measuring rules, interactive interface and data handling method were all accepted by the user. Conclusion The designing approach based on the mix platform takes advantages of the two operating systems, the desired performances are acquired both in the real time processing and with the friendly artistic user interface.
基金the National Natural Science Foundation of China (6070308360575033).
文摘In a measurement system, new representation methods are necessary to maintain the uncertainty and to supply more powerful ability for reasoning and transformation between numerical system and symbolic system. A grey measurement system is discussed from the point of view of intelligent sensors and incomplete information processing compared with a numerical and symbolized measurement system. The methods of grey representation and information processing are proposed for data collection and reasoning. As a case study, multi-ultrasonic sensor systems are demonstrated to verify the effectiveness of the proposed methods.
文摘Data processing of small samples is an important and valuable research problem in the electronic equipment test. Because it is difficult and complex to determine the probability distribution of small samples, it is difficult to use the traditional probability theory to process the samples and assess the degree of uncertainty. Using the grey relational theory and the norm theory, the grey distance information approach, which is based on the grey distance information quantity of a sample and the average grey distance information quantity of the samples, is proposed in this article. The definitions of the grey distance information quantity of a sample and the average grey distance information quantity of the samples, with their characteristics and algorithms, are introduced. The correlative problems, including the algorithm of estimated value, the standard deviation, and the acceptance and rejection criteria of the samples and estimated results, are also proposed. Moreover, the information whitening ratio is introduced to select the weight algorithm and to compare the different samples. Several examples are given to demonstrate the application of the proposed approach. The examples show that the proposed approach, which has no demand for the probability distribution of small samples, is feasible and effective.
基金Project supported by the National Basic Research Program of China(Grant Nos.2014CB921402 and 2015CB921103)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB07010300)+1 种基金the National Natural Science Foundation of China(Grant No.11574386)the Key Research Program of the Chinese Academy of Sciences(Grant No.XDPB0803)
文摘Nitrogen-vacancy (NV) center in diamond is one of the most promising candidates to implement room temperature quantum computing. In this review, we briefly discuss the working principles and recent experimental progresses of this spin qubit. These results focus on understanding and prolonging center spin coherence, steering and probing spin states with dedicated quantum control techniques, and exploiting the quantum nature of these multi-spin systems, such as superposition and entanglement, to demonstrate the superiority of quantum information processing. Those techniques also stimulate the fast development of NV-based quantum sensing, which is an interdisciplinary field with great potential applications.
基金supported by the National Natural Science Foundation of China(61471391)the China Postdoctoral Science Foundation(2013M542541)
文摘Based on the cognitive radar concept and the basic connotation of cognitive skywave over-the-horizon radar(SWOTHR), the system structure and information processingmechanism about cognitive SWOTHR are researched. Amongthem, the hybrid network system architecture which is thedistributed configuration combining with the centralized cognition and its soft/hardware framework with the sense-detectionintegration are proposed, and the information processing framebased on the lens principle and its information processing flowwith receive-transmit joint adaption are designed, which buildand parse the work law for cognition and its self feedback adjustment with the lens focus model and five stages informationprocessing sequence. After that, the system simulation andthe performance analysis and comparison are provided, whichinitially proves the rationality and advantages of the proposedideas. Finally, four important development ideas of futureSWOTHR toward "high frequency intelligence information processing system" are discussed, which are scene information fusion, dynamic reconfigurable system, hierarchical and modulardesign, and sustainable development. Then the conclusion thatthe cognitive SWOTHR can cause the performance improvement is gotten.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61427802,31727901,61625103,61501032,61471038the Chang Jiang Scholars Program(T2012122)+1 种基金part by the 111 project of China under Grant B14010supported by the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China
文摘Radar is an electronic device that uses radio waves to determine the range, angle, or velocity of objects. Real-time signal and information processor is an important module for real-time positioning, imaging, detection and recognition of targets. With the development of ultra-wideband technology, synthetic aperture technology, signal and information processing technology, the radar coverage, detection accuracy and resolution have been greatly improved, especially in terms of one-dimensional(1D) high-resolution radar detection, tracking, recognition, and two-dimensional(2D) synthetic aperture radar imaging technology. Meanwhile, for the application of radar detection and remote sensing with high resolution and wide swath, the amount of data has been greatly increased. Therefore, the radar is required to have low-latency and real-time processing capability under the constraints of size, weight and power consumption. This paper systematically introduces the new technology of high resolution radar and real-time signal and information processing. The key problems and solutions are discussed, including the detection and tracking of 1D high-resolution radar, the accurate signal modeling and wide-swath imaging for geosynchronous orbit synthetic aperture radar, and real-time signal and information processing architecture and efficient algorithms. Finally, the latest research progress and representative results are presented, and the development trends are prospected.
基金Project supported by the Shanghai Pujiang Programme and the National Basic Research Programme of China (Grant No 2006CB921202)
文摘We investigate a planar ion chip design with a two-dimensional array of linear ion traps for scalable quantum information processing. Qubits are formed from the internal electronic states of trapped ^40Ca^+ ions. The segmented electrodes reside in a single plane on a substrate and a grounded metal plate separately, a combination of appropriate rf and DC potentials is applied to them for stable ion confinement. Every two adjacent electrodes can generate a linear ion trap in and between the electrodes above the chip at a distance dependent on the geometrical scale and other considerations. The potential distributions are calculated by using a static electric field qualitatively. This architecture provides a conceptually simple avenue to achieving the microfabrication and large-scale quantum computation based on the arrays of trapped ions.
文摘In order to study the problem of intelligent information processing in new types of imaging fuze, the method of extracting the invariance features of target images is adopted, and radial basis function neural network is used to recognize targets. Owing to its ability of parallel processing, its robustness and generalization, the method can realize the recognition of the conditions of missile-target encounters, and meet the requirements of real-time recognition in the imaging fuze. It is shown that based on artificial neural network target recognition and burst point control are feasible.
文摘Oil monitoring and vibration monitoring are two principal techniques for mechanical fault diagnosis and condition monitoring at present. They monitor the mechanical condition by different approaches, nevertheless, oil and vibration monitoring are related in information collecting and processing. In the same mechanical system, the information obtained from the same information source can be described with the same expression form. The expressions are constituted of a structure matrix, a relative matrix and a system matrix. For oil and vibration monitoring, the information source is correlation and the collection is independent and complementary. And oil monitoring and vibration monitoring have the same process method when they yield their information. This research has provided a reasonable and useful approach to combine oil monitoring and vibration monitoring.
文摘Quantum information processing is an active cross-disciplinary field drawing upon theoretical and experimental physics, computer science, engineering, mathematics, and material science. Its scope ranges from fundamental issues in quantum physics to prospective commercial exploitation by the computing and communications industries.
文摘Background: This work aims at investigating the histology of hippocampus formation as structural model of information processing. The study addressed the question whether the pattern of cellular type distribution within hippocampal fields could be used as support of information processing in the hippocampus. Method: Pyramidal-shaped neurons presenting both cytoplasm and nucleus outlined clearly were measured systematically on brain slides, using a light microscope connected to a microcomputer equipped with a scanner software for measuring particles. Morphological types of cells were identified following class sizes and their distribution determined through hippocampal fields. Results: A battery of statistical tests: Sturges’ classification, class sizes distribution around overall mean, Bartlett’s sphericity test, principal components analysis (PCA) followed by correlations matrix analysis and ANOVA allowed two cellular groups to be identified in the hippocampus: large and small pyramidal-shaped cells. Conclusion: The results show that sensory information processing in the hippocampus could be built on two classes of pyramidal neurons that differed anatomically with probably different physiological functions. The study suggests combination ensembles clustering large and small pyramidal cells at different rates, as fundamental signaling units of the hippocampus.
文摘Temporal information processing in the range of tens to hundreds of milliseconds is critical in many forms of sensory and motor tasks. However, little has been known about the neural mechanisms of temporal information processing. Experimental observations indicate that sensory neurons of the nervous system do not show selective response to temporal properties of external stimuli. On the other hand, temporal selective neurons in the cortex have been reported in many species. Thus, processes which realize the temporal-to-spatial transformation of neuronal activities might be required for temporal information processing. In the present study, we propose a computational model to explore possible roles of electrical synapses in processing the duration of external stimuli. Firstly, we construct a small-scale network with neurons interconnected by electrical synapses in addition to chemical synapses. Basic properties of this small-scale neural network in processing duration information are analyzed. Secondly, a large-scale neural network which is more biologically realistic is further explored. Our results suggest that neural networks with electrical synapses functioning together with chemical synapses can effectively work for the temporal-to-spatial transformation of neuronal activities, and the spatially distributed sequential neural activities can potentially represent temporal information.
基金Supported by National High Technology Research and Development Program("863"Program)of China(No.863-306-ZD13-03-06)
文摘Mutual information (MI)-based image registration is effective in registering medical images, but it is computationally expensive. This paper accelerates MI-based image registration by dividing computation of mutual information into spatial transformation and histogram-based calculation, and performing 3D spatial transformation and trilinear interpolation on graphic processing unit (GPU). The 3D floating image is downloaded to GPU as flat 3D texture, and then fetched and interpolated for each new voxel location in fragment shader. The transformed resuits are rendered to textures by using frame buffer object (FBO) extension, and then read to the main memory used for the remaining computation on CPU. Experimental results show that GPU-accelerated method can achieve speedup about an order of magnitude with better registration result compared with the software implementation on a single-core CPU.
文摘September 10 ~12 ,2008,Lyon,France The IIP conference series provides aforumfor engineers andscientistsin academia,university andindustryto present theirlatest researchfindings in any aspects of intelligent information processing.This ti me , we especially encourage papers on Knowledge Discovery , Knowledge Management ,Intelligent Agents , Machine Learning, Autonomic Reasoning etc.We also welcome papers that highlight successful modern applications of IIP,such as Biomedicine ,Bioinformatics ,e-Services ,e-Learning, Business Intelligence.IIP2008 attempts to meet the needs of a large and diverse community.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11105062 and 11265014the Fundamental Research Funds for the Central Universities under Grant Nos LZUJBKY-2011-57 and LZUJBKY-2015-119
文摘Energy efficiency is closely related to the evolution of biological systems and is important to their information processing. In this work, we calculate the excitation probability of a simple model of a bistable biological unit in response to pulsatile inputs, and its spontaneous excitation rate due to noise perturbation. Then we analytically calculate the mutual information, energy cost, and energy efficiency of an array of these bistable units. We find that the optimal number of units could maximize this array's energy efficiency in encoding pulse inputs, which depends on the fixed energy cost. We conclude that demand for energy efficiency in biological systems may strongly influence the size of these systems under the pressure of natural selection.
文摘The development o f the network technology, and especially the web search engine, has brought great changes to the field of the English translation. Translators can acquire the background information of the translated texts by using the web search engine correctly, inquire about the correct translation methods of the rare professional terms, apply the fixed sentence patterns, and check the correctness of the translation, so as to improve the translation speed and quality.
文摘It is acknowledged that lacking of interdisciplinary communication amongst designers can result in poor coordination performance in building design. Viewing communication as information processing activity, this paper aims to explore the relationship between interdisciplinary information processing (IP) and design coordination performance. Both amount and quality are concerned regarding information processing. 698 project based samples are collected by questionnaire survey from design institutes in China's Mainland. Statistical data analysis shows that the relationship between information processing amount and design coordination performance follows a nonlinear exponential expression: performance = 3.691 (1-0.235IP amount) rather than reverted U curve. It implies that design period is too short to allow information overload. It indicates that the main problem in interdisciplinary communication in design institute in China is insufficient information. In additional, it is found the correlation between IP quality and coordination process performance is much stronger than that between IP amount and coordination process performance. For practitioners, it reminds design mangers to pay more attention to information processing quality rather than amount.
文摘Using Gagne's information processing theory to analyze the listening process so as to provide a pedagogical model for L2 learners to solve listening problems as well as to cast some lights on listening teaching.