The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir wit...The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.展开更多
Barrier impacts on water cut and critical rate of horizontal wells in bottom water-drive reservoirs have been recognized but not investigated quantitatively. Considering the existence of impermeable barriers in oil fo...Barrier impacts on water cut and critical rate of horizontal wells in bottom water-drive reservoirs have been recognized but not investigated quantitatively. Considering the existence of impermeable barriers in oil formations, this paper developed a horizontal well flow model and obtained mathematical equations for the critical rate when water cresting forms in bottom-water reservoirs. The result shows that the barrier increases the critical rate and delays water breakthrough. Further study of the barrier size and location shows that increases in the barrier size and the distance between the barrier and oil-water contact lead to higher critical rates. The critical rate gradually approaches a constant as the barrier size increases. The case study shows the method presented here can be used to predict the critical rate in a bottom-water reservoir and applied to investigate the water cresting behavior of horizontal wells.展开更多
文摘The dissolution and diffusion of CO_(2)in oil and water and its displacement mechanism were investigated by laboratory experiment and numerical simulation for Block 9 in the Tahe oilfield,a sandstone oil reservoir with strong bottom-water drive in Tarim Basin,Northwest China.Such parameters were analyzed as solubility ratio of CO_(2)in oil,gas and water,interfacial tension,in-situ oil viscosity distribution,remaining oil saturation distribution,and oil compositions.The results show that CO_(2)flooding could control water coning and increase oil production.In the early stage of the injection process,CO_(2)expanded vertically due to gravity differentiation,and extended laterally under the action of strong bottom water in the intermediate and late stages.The CO_(2)got enriched and extended at the oil-water interface,forming a high interfacial tension zone,which inhibited the coning of bottom water to some extent.A miscible region with low interfacial tension formed at the gas injection front,which reduced the in-situ oil viscosity by about 50%.The numerical simulation results show that enhanced oil recovery(EOR)is estimated at 5.72%and the oil exchange ratio of CO_(2)is 0.17 t/t.
基金supported by the National Science and Technology Major Project of China (No. 2011ZX05010-003)the National Natural Science Foundation of China (No. 10902093)
文摘Barrier impacts on water cut and critical rate of horizontal wells in bottom water-drive reservoirs have been recognized but not investigated quantitatively. Considering the existence of impermeable barriers in oil formations, this paper developed a horizontal well flow model and obtained mathematical equations for the critical rate when water cresting forms in bottom-water reservoirs. The result shows that the barrier increases the critical rate and delays water breakthrough. Further study of the barrier size and location shows that increases in the barrier size and the distance between the barrier and oil-water contact lead to higher critical rates. The critical rate gradually approaches a constant as the barrier size increases. The case study shows the method presented here can be used to predict the critical rate in a bottom-water reservoir and applied to investigate the water cresting behavior of horizontal wells.