In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinea...In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinear hysteretic behavior of RBs in this paper, which has the advantages of being smooth-varying and physically motivated. Further, based on the results from experimental tests performed by using a particular type of RB (GZN 110) under different excitation scenarios, including white noise and several earthquakes, a new system identification method, referred to as the sequential nonlinear least- square estimation (SNLSE), is introduced to identify the model parameters. It is shown that the proposed simplified Bouc- Wen model is capable of describing the nonlinear hysteretic behavior of RBs, and that the SNLSE approach is very effective in identifying the model parameters of RBs.展开更多
Glass fi ber reinforced gypsum(GFRG) wall panels are prefabricated panels with hollow cores, originally developed in Australia and subsequently adopted by India and China for use in buildings. This paper discusses ide...Glass fi ber reinforced gypsum(GFRG) wall panels are prefabricated panels with hollow cores, originally developed in Australia and subsequently adopted by India and China for use in buildings. This paper discusses identifi cation and calibration of a suitable hysteretic model for GFRG wall panels fi lled with reinforced concrete. As considerable pinching was observed in the experimental results, a suitable hysteretic model with pinched hysteretic rule is used to conduct a series of quasi-static as inelastic hysteretic response analyses of GFRG panels with two different widths. The calibration of the pinching model parameters was carried out to approximately match the simulated and experimental responses up to 80% of the peak load in the post peak region. Interestingly, the same values of various parameters(energy dissipation and pinching related parameters) were obtained for all fi ve test specimens.展开更多
The pipe-soil interactions at shoulders can significantly affect the vortex-induced vibrations (VIV) of free-spanning pipes in the subsea. In this paper, the seabed soil reacting force on the pipe is directly calculat...The pipe-soil interactions at shoulders can significantly affect the vortex-induced vibrations (VIV) of free-spanning pipes in the subsea. In this paper, the seabed soil reacting force on the pipe is directly calculated with a nonlinear hysteretic soil model. For the VIV in the middle span, a classic van der Pol wake oscillator is adopted. Based on the Euler-Bernoulli beam theory, the vibration equations of the pipe are obtained which are different in the middle span and at the two end shoulders. The static configuration of the pipe is firstly calculated and then the VIV is simulated.The present model is validated with the comparisons of VIV experiment, pipe-soil interaction experiment and the simulation results of VIV of free-spanning pipes in which the seabed soil is modelled with spring-dashpots. With the present model, the influence of seabed soil on the VIV of a free-spanning pipe is analyzed. The parametric studies show that when the seabed soil has a larger suction area, the pipe vibrates with smaller bending stresses and is safer.While with the increase of the shear strength of the seabed soil, the bending stresses increase and the pipe faces more danger.展开更多
This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to ...This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to experimentally investigate the hysteretic behavior of six different types of rigid bus-flexible connectors 220 kV electrical substations when subjected to cyclic loading.Another objective is to theoretically study the flexibility and effectiveness of a previously proposed analytical model in fitting the experimental hysteresis loops of the tested rigid bus-flexible connectors.The experimental investigation indicates that the tested rigid bus-flexible connectors exhibit highly asymmetric hysteresis behavior along with tension stiffening effect.The theoretical study demonstrates that the generalized Bouc-Wen model has high flexibility and is effective in fitting the experimental hysteresis resisting force-displacement curves of the six tested rigid bus-flexible connectors.展开更多
As a novel coupling beam for coupled shear wall structures,the bending-type frictional steel truss coupling beam(BFTCB)concentrates the deformation and energy dissipation in friction dampers at the bottom chord,allowi...As a novel coupling beam for coupled shear wall structures,the bending-type frictional steel truss coupling beam(BFTCB)concentrates the deformation and energy dissipation in friction dampers at the bottom chord,allowing the main body to remain elastic during earthquakes.As the preparatory work for resilient structure design based on the BFTCB,this work concentrates on developing the hysteretic model for BFTCB.Firstly,the BFTCB stiffness-strength decoupling mechanism was introduced,i.e.,the shear strength is provided by friction dampers while webs control its initial stiffness.Secondly,a hysteretic model that reflects the BFTCB two-stage sliding characteristic was proposed.The model consists of a trilinear backbone curve and the unloading and reverse loading rules.The model has eight control parameters,of which two core parameters(initial stiffness and limiting shear strength)are derived from the BFTCB stiffness-strength decoupling mechanism,whereas the remaining parameters are obtained by theoretical analysis and empirical calibration.The hysteretic model was then compared with the test curves and demonstrated good accuracy.Finally,a series of FE prototypes of BFTCB with different design stiffnesses and strengths was adopted to verify the hysteretic model.The results showed that the proposed model fitted well with the FE prototypes,indicating its applicability to BFTCB with varying core design parameters.Therefore,the hysteretic model can be adopted for BFTCB to support the resilient shear wall structure design.展开更多
In this paper, a numerical method for correlation sensitivity analysis of a nonlinear random vibration system is presented. Based on the first passage failure model, the probability perturbation method is employed to ...In this paper, a numerical method for correlation sensitivity analysis of a nonlinear random vibration system is presented. Based on the first passage failure model, the probability perturbation method is employed to determine the statistical characteristics of failure modes and the correlation between them. The sensitivity of correlation between failure modes with respect to random parameters characterizing the uncertainty of the hysteretic loop is discussed. In a numerical example, a two-DOF shear structure with uncertain hysteretic restoring force is considered. The statistical characteristics of response, failure modes and the sensitivity of random hysteretic loop parameters are provided, and also compared with a Monte Carlo simulation.展开更多
This paper presents an experimental and numerical study to investigate the hysteretic performance of a new type of isolator consisting of shape memory alloy springs and friction bearing called an SMA spring-friction b...This paper presents an experimental and numerical study to investigate the hysteretic performance of a new type of isolator consisting of shape memory alloy springs and friction bearing called an SMA spring-friction bearing (SFB). The SFB is a sliding-type isolator with SMA devices used for the seismic protection of engineering structures. The principle of operation of the isolation bearing is introduced. In order to explore the possibility of applying SMA elements in passive seismic control devices, large diameter superelastic tension/compression NiTi SMA helical springs used in the SFB isolator were developed. Mechanical experiments of the SMA helical spring were carried out to understand its superelastic characteristics. After that, a series of quasi-static tests on a single SFB isolator prototype were conducted to measure its force-displacement relationships for different loading conditions and study the corresponding variation law of its mechanical performance. The experimental results demonstrate that the SFB exhibits full hysteretic curves, excellent energy dissipation capacity, and moderate recentering ability. Finally, a theoretical model capable of emulating the hysteretic behavior of the SMA-based isolator was then established and implemented in MATLAB software. The comparison of the numerical results with the experimental results shows the efficacy of the proposed model for simulating the response of the SFB.展开更多
A nonlinear vibration isolation system is promising to provide a high-efficient broadband isolation performance.In this paper,a generalized vibration isolation system is established with nonlinear stiffness,nonlinear ...A nonlinear vibration isolation system is promising to provide a high-efficient broadband isolation performance.In this paper,a generalized vibration isolation system is established with nonlinear stiffness,nonlinear viscous damping,and Bouc-Wen(BW)hysteretic damping.An approximate analytical analysis is performed based on a harmonic balance method(HBM)and an alternating frequency/time(AFT)domain technique.To evaluate the damping effect,a generalized equivalent damping ratio is defined with the stiffness-varying characteristics.A comprehensive comparison of different kinds of damping is made through numerical simulations.It is found that the damping ratio of the linear damping is related to the stiffness-varying characteristics while the damping ratios of two kinds of nonlinear damping are related to the responding amplitudes.The linear damping,hysteretic damping,and nonlinear viscous damping are suitable for the small-amplitude,medium-amplitude,and large-amplitude conditions,respectively.The hysteretic damping has an extra advantage of broadband isolation.展开更多
This paper presents a statistically refined Bouc-Wen model of tri-axial interactions for the identification of structural systems under tri-directional seismic excitations. Through limited vibration measurements in th...This paper presents a statistically refined Bouc-Wen model of tri-axial interactions for the identification of structural systems under tri-directional seismic excitations. Through limited vibration measurements in the National Center for Research on Earthquake Engineering in Taiwan conducting model-based experiments, the 3-D Bouc-Wen model has been statistically and repetitively refined using the 95% confidence interval of the estimated structural parameters to determine their statistical significance in a multiple regression setting. When the parameters' confidence interval covers the "null" value, it is statistically sustainable to truncate such parameters. The remaining parameters will repetitively undergo such parameter sifting process for model refinement until all the parameters' statistical significance cannot be further improved. The effectiveness of the refined model has been shown considering the effects of sampling errors, of coupled restoring forces in tri-directions, and of the under-over-parameterization of structural systems. Sifted and estimated parameters such as the stiffness, and its corresponding natural frequency, resulting from the identification methodology developed in this study are carefully observed for system vibration control.展开更多
In order to establish a restoring-force model for modified concrete columns with recycled aggregates concrete(RAC), cyclic loading tests were carried out on five concretes with RAC columns and ordinary concrete frame ...In order to establish a restoring-force model for modified concrete columns with recycled aggregates concrete(RAC), cyclic loading tests were carried out on five concretes with RAC columns and ordinary concrete frame columns under the combined influence with different admixtures and admixtures ratios(silica fume and hybrid fiber). The expressions for characteristic nodes of the skeleton curve were given by the analysis and numerical regression of the test results. In addition, the hysteretic rules of the restoring-force model and the expression for unloading stiffness were presented. Finally, we summed up the complete calculation method of the hysteretic restoring force, whose results were in good agreement with experiment. The results demonstrated that the proposed model could simulate and reflect the corresponding hysteretic behaviors, and the calculation method can provide the theoretical basis for the engineering application.展开更多
The dynamic behavior of the stranded wire helical spring is described by a modified Bouc-Wen model while the model parameters must be identified using an identification method and experimental data. Existing identific...The dynamic behavior of the stranded wire helical spring is described by a modified Bouc-Wen model while the model parameters must be identified using an identification method and experimental data. Existing identification methods usually relies either solely nonlinear iterative algorithms or manually trial and error. Therefore, the identification process can be rather time consuming and effort taking. As a result, these methods are not ideal for engineering applications. To come up with a more practical method, a three-stage identification method is proposed. Periodic loading and identification simulations are carried out to verify the effectiveness of the proposed method. Noises are added to the simulated data to test the performance of the proposed method when dealing with noise contaminated data. The simulation results indicate that the proposed method is able to give satisfying results when the noise levels are set to be 0.01, 0.03, 0.05 and 0.07. In addition, the proposed method is also applied to experimental data and compared with an existing method. The experimental data is acquired through a periodic loading test. The experiment results suggest that the proposed method features better accuracy compared with the existing method. An effective approach is proposed for identifying the model parameters of the stranded wire helical spring.展开更多
A nonlinear damage model based on the combination of deformation and hysteretic energy and its validation with experiments are presented.Also,a combination parameter is defined to consider the mutual effect of deforma...A nonlinear damage model based on the combination of deformation and hysteretic energy and its validation with experiments are presented.Also,a combination parameter is defined to consider the mutual effect of deformation and hysteretic energy for different types of components in different loading stages.Four reinforced concrete (RC) columns are simulated and analyzed using the nonlinear damage model.The results indicate that the damage evolution evaluated by the model agrees well with the experimental phenomenon.Furthermore,the seismic damage evolution of a six-story RC frame was analyzed,revealing four typical failure modes according to the interstory drift distribution of the structure;the damage values calculated using the nonlinear damage model agree well with the four typical failure modes.展开更多
基金National Natural Science Foundation of China Under Grant No.10572058the Science Foundation of Aeronautics of China Under Grant No.2008ZA52012
文摘In order to evaluate the nonlinear performance and the possible damage to rubber-bearings (RBs) during their normal operation or under strong earthquakes, a simplified Bouc-Wen model is used to describe the nonlinear hysteretic behavior of RBs in this paper, which has the advantages of being smooth-varying and physically motivated. Further, based on the results from experimental tests performed by using a particular type of RB (GZN 110) under different excitation scenarios, including white noise and several earthquakes, a new system identification method, referred to as the sequential nonlinear least- square estimation (SNLSE), is introduced to identify the model parameters. It is shown that the proposed simplified Bouc- Wen model is capable of describing the nonlinear hysteretic behavior of RBs, and that the SNLSE approach is very effective in identifying the model parameters of RBs.
文摘Glass fi ber reinforced gypsum(GFRG) wall panels are prefabricated panels with hollow cores, originally developed in Australia and subsequently adopted by India and China for use in buildings. This paper discusses identifi cation and calibration of a suitable hysteretic model for GFRG wall panels fi lled with reinforced concrete. As considerable pinching was observed in the experimental results, a suitable hysteretic model with pinched hysteretic rule is used to conduct a series of quasi-static as inelastic hysteretic response analyses of GFRG panels with two different widths. The calibration of the pinching model parameters was carried out to approximately match the simulated and experimental responses up to 80% of the peak load in the post peak region. Interestingly, the same values of various parameters(energy dissipation and pinching related parameters) were obtained for all fi ve test specimens.
基金This study was financially supported by the National Natural Science Foundation of China(Grant No.51679167)the Natural Science Foundation of Shandong Province of China(Grant No.ZR2018MEE032)。
文摘The pipe-soil interactions at shoulders can significantly affect the vortex-induced vibrations (VIV) of free-spanning pipes in the subsea. In this paper, the seabed soil reacting force on the pipe is directly calculated with a nonlinear hysteretic soil model. For the VIV in the middle span, a classic van der Pol wake oscillator is adopted. Based on the Euler-Bernoulli beam theory, the vibration equations of the pipe are obtained which are different in the middle span and at the two end shoulders. The static configuration of the pipe is firstly calculated and then the VIV is simulated.The present model is validated with the comparisons of VIV experiment, pipe-soil interaction experiment and the simulation results of VIV of free-spanning pipes in which the seabed soil is modelled with spring-dashpots. With the present model, the influence of seabed soil on the VIV of a free-spanning pipe is analyzed. The parametric studies show that when the seabed soil has a larger suction area, the pipe vibrates with smaller bending stresses and is safer.While with the increase of the shear strength of the seabed soil, the bending stresses increase and the pipe faces more danger.
基金National Natural Science Foundation of China under Grant No.51978397。
文摘This paper describes the quasi-static testing and analytical modelling of the hysteretic behavior of aluminum alloy rigid bus-flexible connectors of 220 kV electrical substations.The main objective of the study is to experimentally investigate the hysteretic behavior of six different types of rigid bus-flexible connectors 220 kV electrical substations when subjected to cyclic loading.Another objective is to theoretically study the flexibility and effectiveness of a previously proposed analytical model in fitting the experimental hysteresis loops of the tested rigid bus-flexible connectors.The experimental investigation indicates that the tested rigid bus-flexible connectors exhibit highly asymmetric hysteresis behavior along with tension stiffening effect.The theoretical study demonstrates that the generalized Bouc-Wen model has high flexibility and is effective in fitting the experimental hysteresis resisting force-displacement curves of the six tested rigid bus-flexible connectors.
基金supported by the Scientific Research Fund of MultiFunctional Shaking Tables Laboratory of Beijing University of Civil Engineering and Architecture(2022MFSTL06)Science&Technology Foundation of Liaoning Province,China:General Program(2021-MS131).
文摘As a novel coupling beam for coupled shear wall structures,the bending-type frictional steel truss coupling beam(BFTCB)concentrates the deformation and energy dissipation in friction dampers at the bottom chord,allowing the main body to remain elastic during earthquakes.As the preparatory work for resilient structure design based on the BFTCB,this work concentrates on developing the hysteretic model for BFTCB.Firstly,the BFTCB stiffness-strength decoupling mechanism was introduced,i.e.,the shear strength is provided by friction dampers while webs control its initial stiffness.Secondly,a hysteretic model that reflects the BFTCB two-stage sliding characteristic was proposed.The model consists of a trilinear backbone curve and the unloading and reverse loading rules.The model has eight control parameters,of which two core parameters(initial stiffness and limiting shear strength)are derived from the BFTCB stiffness-strength decoupling mechanism,whereas the remaining parameters are obtained by theoretical analysis and empirical calibration.The hysteretic model was then compared with the test curves and demonstrated good accuracy.Finally,a series of FE prototypes of BFTCB with different design stiffnesses and strengths was adopted to verify the hysteretic model.The results showed that the proposed model fitted well with the FE prototypes,indicating its applicability to BFTCB with varying core design parameters.Therefore,the hysteretic model can be adopted for BFTCB to support the resilient shear wall structure design.
基金National Natural Science Foundation of ChinaUnder Grant No: 50535010
文摘In this paper, a numerical method for correlation sensitivity analysis of a nonlinear random vibration system is presented. Based on the first passage failure model, the probability perturbation method is employed to determine the statistical characteristics of failure modes and the correlation between them. The sensitivity of correlation between failure modes with respect to random parameters characterizing the uncertainty of the hysteretic loop is discussed. In a numerical example, a two-DOF shear structure with uncertain hysteretic restoring force is considered. The statistical characteristics of response, failure modes and the sensitivity of random hysteretic loop parameters are provided, and also compared with a Monte Carlo simulation.
基金Beijing Natural Science Foundation under Grant No.8132024Science and Technology Development Project of Beijing Municipal Commission of Education under Grant No.KM201510016004
文摘This paper presents an experimental and numerical study to investigate the hysteretic performance of a new type of isolator consisting of shape memory alloy springs and friction bearing called an SMA spring-friction bearing (SFB). The SFB is a sliding-type isolator with SMA devices used for the seismic protection of engineering structures. The principle of operation of the isolation bearing is introduced. In order to explore the possibility of applying SMA elements in passive seismic control devices, large diameter superelastic tension/compression NiTi SMA helical springs used in the SFB isolator were developed. Mechanical experiments of the SMA helical spring were carried out to understand its superelastic characteristics. After that, a series of quasi-static tests on a single SFB isolator prototype were conducted to measure its force-displacement relationships for different loading conditions and study the corresponding variation law of its mechanical performance. The experimental results demonstrate that the SFB exhibits full hysteretic curves, excellent energy dissipation capacity, and moderate recentering ability. Finally, a theoretical model capable of emulating the hysteretic behavior of the SMA-based isolator was then established and implemented in MATLAB software. The comparison of the numerical results with the experimental results shows the efficacy of the proposed model for simulating the response of the SFB.
基金Project supported by the National Natural Science Foundation of China(No.11902097)the China Postdoctoral Science Foundation(No.2019M661266)。
文摘A nonlinear vibration isolation system is promising to provide a high-efficient broadband isolation performance.In this paper,a generalized vibration isolation system is established with nonlinear stiffness,nonlinear viscous damping,and Bouc-Wen(BW)hysteretic damping.An approximate analytical analysis is performed based on a harmonic balance method(HBM)and an alternating frequency/time(AFT)domain technique.To evaluate the damping effect,a generalized equivalent damping ratio is defined with the stiffness-varying characteristics.A comprehensive comparison of different kinds of damping is made through numerical simulations.It is found that the damping ratio of the linear damping is related to the stiffness-varying characteristics while the damping ratios of two kinds of nonlinear damping are related to the responding amplitudes.The linear damping,hysteretic damping,and nonlinear viscous damping are suitable for the small-amplitude,medium-amplitude,and large-amplitude conditions,respectively.The hysteretic damping has an extra advantage of broadband isolation.
文摘This paper presents a statistically refined Bouc-Wen model of tri-axial interactions for the identification of structural systems under tri-directional seismic excitations. Through limited vibration measurements in the National Center for Research on Earthquake Engineering in Taiwan conducting model-based experiments, the 3-D Bouc-Wen model has been statistically and repetitively refined using the 95% confidence interval of the estimated structural parameters to determine their statistical significance in a multiple regression setting. When the parameters' confidence interval covers the "null" value, it is statistically sustainable to truncate such parameters. The remaining parameters will repetitively undergo such parameter sifting process for model refinement until all the parameters' statistical significance cannot be further improved. The effectiveness of the refined model has been shown considering the effects of sampling errors, of coupled restoring forces in tri-directions, and of the under-over-parameterization of structural systems. Sifted and estimated parameters such as the stiffness, and its corresponding natural frequency, resulting from the identification methodology developed in this study are carefully observed for system vibration control.
基金Project(51178388)supported by the National Natural Science Foundation of ChinaProject(2013SZS01-Z02)supported by Key Laboratory Fund of Shaanxi Province,China
文摘In order to establish a restoring-force model for modified concrete columns with recycled aggregates concrete(RAC), cyclic loading tests were carried out on five concretes with RAC columns and ordinary concrete frame columns under the combined influence with different admixtures and admixtures ratios(silica fume and hybrid fiber). The expressions for characteristic nodes of the skeleton curve were given by the analysis and numerical regression of the test results. In addition, the hysteretic rules of the restoring-force model and the expression for unloading stiffness were presented. Finally, we summed up the complete calculation method of the hysteretic restoring force, whose results were in good agreement with experiment. The results demonstrated that the proposed model could simulate and reflect the corresponding hysteretic behaviors, and the calculation method can provide the theoretical basis for the engineering application.
基金Supported by National Natural Science Foundation of China(Grant Nos.51375508,51375517)the Key Technologies R&D Program of China(Grant No.2012BAF12B09)the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(Grant No.IRT1196)
文摘The dynamic behavior of the stranded wire helical spring is described by a modified Bouc-Wen model while the model parameters must be identified using an identification method and experimental data. Existing identification methods usually relies either solely nonlinear iterative algorithms or manually trial and error. Therefore, the identification process can be rather time consuming and effort taking. As a result, these methods are not ideal for engineering applications. To come up with a more practical method, a three-stage identification method is proposed. Periodic loading and identification simulations are carried out to verify the effectiveness of the proposed method. Noises are added to the simulated data to test the performance of the proposed method when dealing with noise contaminated data. The simulation results indicate that the proposed method is able to give satisfying results when the noise levels are set to be 0.01, 0.03, 0.05 and 0.07. In addition, the proposed method is also applied to experimental data and compared with an existing method. The experimental data is acquired through a periodic loading test. The experiment results suggest that the proposed method features better accuracy compared with the existing method. An effective approach is proposed for identifying the model parameters of the stranded wire helical spring.
基金the National Natural Science Foundation of China(Grant 51578058)the Beijing Natural Science Foundation(Grant 8172038).
文摘A nonlinear damage model based on the combination of deformation and hysteretic energy and its validation with experiments are presented.Also,a combination parameter is defined to consider the mutual effect of deformation and hysteretic energy for different types of components in different loading stages.Four reinforced concrete (RC) columns are simulated and analyzed using the nonlinear damage model.The results indicate that the damage evolution evaluated by the model agrees well with the experimental phenomenon.Furthermore,the seismic damage evolution of a six-story RC frame was analyzed,revealing four typical failure modes according to the interstory drift distribution of the structure;the damage values calculated using the nonlinear damage model agree well with the four typical failure modes.