Despite recent progress, laminar-turbulent coexistence in transitional planar wall-bounded shear flows is still not well understood. Contrasting with the processes by which chaotic flow inside turbulent patches is sus...Despite recent progress, laminar-turbulent coexistence in transitional planar wall-bounded shear flows is still not well understood. Contrasting with the processes by which chaotic flow inside turbulent patches is sustained at the local(minimal flow unit) scale, the mechanisms controlling the obliqueness of laminar-turbulent interfaces typically observed all along the coexistence range are still mysterious. An extension of Waleffe's approach [Waleffe, 1997] is used to show that,already at the local scale, drift flows breaking the problem's spanwise symmetry are generated just by slightly detuning the modes involved in the self-sustainment process. This opens perspectives for theorizing the formation of laminar-turbulent patterns.展开更多
In this article we bounded symmetric domains study holomorphic isometries of the Poincare disk into Earlier we solved the problem of analytic continuation of germs of holomorphic maps between bounded domains which a...In this article we bounded symmetric domains study holomorphic isometries of the Poincare disk into Earlier we solved the problem of analytic continuation of germs of holomorphic maps between bounded domains which are isometrics up to normalizing constants with respect to the Bergman metric, showing in particular that the graph 170 of any germ of holomorphic isometry of the Poincar6 disk A into an irreducible bounded symmetric domain Ω belong to C^N in its Harish-Chandra realization must extend to an affinealgebraic subvariety V belong to C × C^N = C^N+1, and that the irreducible component of V ∩ (△ × Ω) containing V0 is the graph of a proper holomorphic isometric embedding F : A→ Ω. In this article we study holomorphie isometric embeddings which are asymptotically geodesic at a general boundary point b ∈ δ△. Starting with the structural equation for holomorphic isometrics arising from the Gauss equation, we obtain by covariant differentiation an identity relating certain holomorphic bisectional curvatures to the boundary behavior of the second fundamental form σ of the holomorphie isometric embedding. Using the nonpositivity of holomorphic bisectional curvatures on a bounded symmetric domain, we prove that ‖σ‖ must vanish at a general boundary point either to the order 1 or to the order 1/2, called a holomorphie isometry of the first resp. second kind. We deal with special cases of non-standard holomorphic isometric embeddings of such maps, showing that they must be asymptotically totally geodesic at a general boundary point and in fact of the first kind whenever the target domain is a Cartesian product of complex unit balls. We also study the boundary behavior of an example of holomorphic isometric embedding from the Poincare disk into a Siegel upper half-plane by an explicit determination of the boundary behavior of holomorphic sectional curvatures in the directions tangent to the embedded Poincare disk, showing that the map is indeed asymptotically totally geodesic at a general boundary point and of the first kind. For the metric computation we make use of formulas for symplectic geometry on Siegel upper half-planes.展开更多
文摘Despite recent progress, laminar-turbulent coexistence in transitional planar wall-bounded shear flows is still not well understood. Contrasting with the processes by which chaotic flow inside turbulent patches is sustained at the local(minimal flow unit) scale, the mechanisms controlling the obliqueness of laminar-turbulent interfaces typically observed all along the coexistence range are still mysterious. An extension of Waleffe's approach [Waleffe, 1997] is used to show that,already at the local scale, drift flows breaking the problem's spanwise symmetry are generated just by slightly detuning the modes involved in the self-sustainment process. This opens perspectives for theorizing the formation of laminar-turbulent patterns.
基金supported by the CERG grant HKU701803 of the Research Grants Council, Hong Kong
文摘In this article we bounded symmetric domains study holomorphic isometries of the Poincare disk into Earlier we solved the problem of analytic continuation of germs of holomorphic maps between bounded domains which are isometrics up to normalizing constants with respect to the Bergman metric, showing in particular that the graph 170 of any germ of holomorphic isometry of the Poincar6 disk A into an irreducible bounded symmetric domain Ω belong to C^N in its Harish-Chandra realization must extend to an affinealgebraic subvariety V belong to C × C^N = C^N+1, and that the irreducible component of V ∩ (△ × Ω) containing V0 is the graph of a proper holomorphic isometric embedding F : A→ Ω. In this article we study holomorphie isometric embeddings which are asymptotically geodesic at a general boundary point b ∈ δ△. Starting with the structural equation for holomorphic isometrics arising from the Gauss equation, we obtain by covariant differentiation an identity relating certain holomorphic bisectional curvatures to the boundary behavior of the second fundamental form σ of the holomorphie isometric embedding. Using the nonpositivity of holomorphic bisectional curvatures on a bounded symmetric domain, we prove that ‖σ‖ must vanish at a general boundary point either to the order 1 or to the order 1/2, called a holomorphie isometry of the first resp. second kind. We deal with special cases of non-standard holomorphic isometric embeddings of such maps, showing that they must be asymptotically totally geodesic at a general boundary point and in fact of the first kind whenever the target domain is a Cartesian product of complex unit balls. We also study the boundary behavior of an example of holomorphic isometric embedding from the Poincare disk into a Siegel upper half-plane by an explicit determination of the boundary behavior of holomorphic sectional curvatures in the directions tangent to the embedded Poincare disk, showing that the map is indeed asymptotically totally geodesic at a general boundary point and of the first kind. For the metric computation we make use of formulas for symplectic geometry on Siegel upper half-planes.