In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results a...In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results are obtained by using some standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also presented. We extend previous results even in the integer case q = 2.展开更多
The universal practices have been centralizing on the research of regularization to the direct boundary integal equations (DBIEs). The character is elimination of singularities by using the simple solutions. However...The universal practices have been centralizing on the research of regularization to the direct boundary integal equations (DBIEs). The character is elimination of singularities by using the simple solutions. However, up to now the research of regularization to the first kind integral equations for plane potential problems has never been found in previous literatures. The presentation is mainly devoted to the research on the regularization of the singular boundary integral equations with indirect unknowns. A novel view and idea is presented herein, in which the regularized boundary integral equations with indirect unknowns without including the Cauchy principal value (CPV) and Hadamard-finite-part (HFP) integrals are established for the plane potential problems. With some numerical results, it is shown that the better accuracy and higher efficiency, especially on the boundary, can be achieved by the present system.展开更多
By means of Fourier integral transformation of generalized function, the fundamental solution for the bending problem of plates on two-parameter foundation is derived in this paper, and the fundamental solution is exp...By means of Fourier integral transformation of generalized function, the fundamental solution for the bending problem of plates on two-parameter foundation is derived in this paper, and the fundamental solution is expanded into a uniformly convergent series. On the basis of the above work, two boundary integral equations which are suitable to arbitrary shapes and arbitrary boundary conditions are established by means of the Rayleigh-Green identity. The content of the paper provides the powerful theories for the application of BEM in this problem.展开更多
DC Resistivity Tomography is a non-linear inversion problem. So far there are mainly two kinds of inversion methods, based on the finite-element method and alpha centers method. In this paper, the disadvantages of the...DC Resistivity Tomography is a non-linear inversion problem. So far there are mainly two kinds of inversion methods, based on the finite-element method and alpha centers method. In this paper, the disadvantages of these two kinds of methods were analysed,and a new method of forward modeling and inversion (Tomography) based on boundary integral equations was proposed. This scheme successfuly overcomes the difficulties of the two formarly methods. It isn’t necessary to use the linearization approximation and calculate the Jacobi matrix. Numerical modeling results given in this paper showed that the computation speed of our method is fast, and there is not any special requirement for initial model, and satisfying results of tomography can be obtained in the case of great contrast of conductivity. So it has wide applications.展开更多
Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical techniq...Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical technique of non-analytic continuation and is fully proved by means of the variational principle. The previous three kinds of boundary integral equations with indirect unknowns are discussed thoroughly and it is shown that all previous results are not EBIE.展开更多
A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations (BIE) and solved with the newly developed boundary point method (BPM). The...A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations (BIE) and solved with the newly developed boundary point method (BPM). The model is closely derived from the concept of the equivalent inclusion Of Eshelby tensors. Eigenstrains are iteratively determined for each short-fiber embedded in the matrix with various properties via the Eshelby tensors, which can be readily obtained beforehand either through analytical or numerical means. As unknown variables appear only on the boundary of the solution domain, the solution scale of the inhomogeneity problem with the model is greatly reduced. This feature is considered significant because such a traditionally time-consuming problem with inhomogeneity can be solved most cost-effectively compared with existing numerical models of the FEM or the BEM. The numerical examples are presented to compute the overall elastic properties for various short-fiber reinforced composites over a representative volume element (RVE), showing the validity and the effectiveness of the proposed computational modal and the solution procedure.展开更多
The properties of the fundamental solution are derived in linear elastostatics. These properties are used to show that the conventional displacement and traction boundary integral equations yield non-unique displaceme...The properties of the fundamental solution are derived in linear elastostatics. These properties are used to show that the conventional displacement and traction boundary integral equations yield non-unique displacement solutions in a traction boundary value problem. The condition for the existence of unique displacement solutions is proposed for the traction boundary value problem. The degrees of freedom of the displacement solution are removed by the condition to obtain the boundary integral equations of unique solutions for the traction boundary value problems. Numerical example is presented to demonstrate the accuracy and efficiency of the present equations.展开更多
Using the method of the boundary integral equation, a set of singular integral equations of the hear transfer problems and the thermo-elastic problems of a crack embedded in a two-dimensional finite body is derived, a...Using the method of the boundary integral equation, a set of singular integral equations of the hear transfer problems and the thermo-elastic problems of a crack embedded in a two-dimensional finite body is derived, and then,its numerical method is proposed by the numerical method of the singular integral equations combined with boundary element method. Moreover, the singular nature of temperature gradient field near the crack front is proved by the main-part analysis method of the singular integral equation, and the singular temperature gradients are exactly obtained. Finally, several typical examples calculated.展开更多
The boundary integral equation method (BIEM) is now widely used in numerical studies on earthquake rupture dynamics, and is proved to be a powerful tool to deal with problems on complex fault system. However, since ...The boundary integral equation method (BIEM) is now widely used in numerical studies on earthquake rupture dynamics, and is proved to be a powerful tool to deal with problems on complex fault system. However, since this method heavily lies on the specific forms of Green's function and only the Green's function in full-space has a closed analytic expression, it is usually limited to a full-space medium. In this study, as a first step to extend this method to an arbitrary complex fault system in half-space, the boundary integral equations (BIEs) for dynamic strike-slip on vertical complex fault system in half-space are derived based on exact Green's function for isotropic and homogeneous half-space. Effect of the geometry of the complex fault system are dealt with carefully. Final BIEs is composed of two parts: contribution from full-space, which has been thoroughly investigated by Aochi and his co-workers by using the Green's function for full-space, and that from free surface, which is studied in detail in this study.展开更多
Two fundamental solutions for bending problem of Reissner's plates on twoparameter foundation are derived by means of Fouier integral transformation of generalized function in this paper.On the basis of virtual wo...Two fundamental solutions for bending problem of Reissner's plates on twoparameter foundation are derived by means of Fouier integral transformation of generalized function in this paper.On the basis of virtual work principles, three boundary integral equations which fit for arbitrary shapes, loads and boundary conditions of thick plates are presented according to Hu Haichang's theory about Reissner's plates. It provides the fundamental theories for the application of BEM. A numerical example is given for clamped, simply supported and free boundary conditions. The results obtained are satisfactory as compared with the analytical methods.展开更多
Based on the fact that the singular boundary integrals in the sense of Cauchy principal value can be represented approximately by the mean values of two companion nearly singular boundary integrals, a vary general app...Based on the fact that the singular boundary integrals in the sense of Cauchy principal value can be represented approximately by the mean values of two companion nearly singular boundary integrals, a vary general approach was developed in the paper. In the approach, the approximate formulation before discretization was constructed to cope with the difficulties encountered in the corner treatment in the formulations of hypersingular boundary integral equations. This makes it possible to solve the hypersingular boundary integral equation numerically in a non regularized form and in a local manner by using conforming C 0 quadratic boundary elements and standard Gaussian quadratures similar to those employed in the conventional displacement BIE formulations. The approximate formulation is very convenient to use because the corner information is comprised naturally in the representations of those approximate integrals. Numerical examples in plane elasticity show that with the present approach, the compatible or better results can be achieved in comparison with those of the conventional BIE formulations.展开更多
The exact form of the exterior problem for plane elasticity problems was produced and fully proved by the variational principle.Based on this,the equivalent boundary integral equations(EBIE) with direct variables,whic...The exact form of the exterior problem for plane elasticity problems was produced and fully proved by the variational principle.Based on this,the equivalent boundary integral equations(EBIE) with direct variables,which are equivalent to the original boundary value problem,were deduced rigorously.The conventionally prevailing boundary integral equation with direct variables was discussed thoroughly by some examples and it is shown that the previous results are not EBIE.展开更多
Based on the Fourier transform, the analytical solution of boundary integral equations formulated for the complex velocity of a 2-D steady linear surface flow is derived. It has been found that before the radiation co...Based on the Fourier transform, the analytical solution of boundary integral equations formulated for the complex velocity of a 2-D steady linear surface flow is derived. It has been found that before the radiation condition is imposed,free waves appear both far upstream and downstream. In order to cancel the free waves in far upstream regions, the eigensolution of a specific eigenvalue, which satisfies the homogeneous boundary integral equation, is found and superposed to the analytical solution. An example, a submerged vortex, is used to demonstrate the derived analytical solution. Furthermore,an analytical approach to imposing the radiation condition in the numerical solution of boundary integral equations for 2-D steady linear wave problems is proposed.展开更多
We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left-and right-sided fractional derivatives.The main ingredient of the proposed method is to recast the p...We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left-and right-sided fractional derivatives.The main ingredient of the proposed method is to recast the problem into an equivalent system of weakly singular integral equations.Then,a Legendre-based spectral collocation method is developed for solving the transformed system.Therefore,we can make good use of the advantages of the Gauss quadrature rule.We present the construction and analysis of the collocation method.These results can be indirectly applied to solve fractional optimal control problems by considering the corresponding Euler–Lagrange equations.Two numerical examples are given to confirm the convergence analysis and robustness of the scheme.展开更多
A complete boundary integral formulation for steady compressible inviscid flows governed by nonlinear equations is established by using ρV as variable. Thus, the dimensionality of the problem to be solved is reduced ...A complete boundary integral formulation for steady compressible inviscid flows governed by nonlinear equations is established by using ρV as variable. Thus, the dimensionality of the problem to be solved is reduced by one and the computational mesh to be generated is needed only on the boundary of the domain.展开更多
This paper studies several problems , which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1] are chosen as a starting point for characterization...This paper studies several problems , which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1] are chosen as a starting point for characterizations of functions in Besom spaces B(?)(0,1) with 0<σ<∞ and (1+σ)-1<γ<∞. Such function spaces are known to be related to nonlinear approximation. Then so called restricted nonlinear approximation procedures with respect to Sobolev space norms are considered. Besides characterization results Jackson type estimates for various tree-type and tresholding algorithms are investigated. Finally known approximation results for geometry induced singularity functions of boundary integeral equations are combined with the characterization results for restricted nonlinear approximation to show Besov space regularity results.展开更多
The integral-differential equations for three-dimensional planar interfacial cracks of arbitrary shape in transversely isotropic bimaterials were derived by virtue of the Somigliana identity and the fundamental soluti...The integral-differential equations for three-dimensional planar interfacial cracks of arbitrary shape in transversely isotropic bimaterials were derived by virtue of the Somigliana identity and the fundamental solutions, in which the displacement discontinuities across the crack faces are the unknowns to be determined. The interface is parallel to both the planes of isotropy. The singular behaviors of displacement and stress near the crack border were analyzed and the stress singularity indexes were obtained by integral equation method. The stress intensity factors were expressed in terms of the displacement discontinuities. In the non-oscillatory case, the hyper-singular boundary integral-differential equations were reduced to hyper-singular boundary integral equations similar to those of homogeneously isotropic materials.展开更多
We consider a kind of scattering problem by a crack F that is buried in a bounded domain D, and we put a point source inside the domain D. This leads to a mixed boundary value problem to the Helmholtz equation in the ...We consider a kind of scattering problem by a crack F that is buried in a bounded domain D, and we put a point source inside the domain D. This leads to a mixed boundary value problem to the Helmholtz equation in the domain D with a crack Г. Both sides of the crack F are given Dirichlet-impedance boundary conditions, and different boundary condition (Dirichlet, Neumann or Impedance boundary condition) is set on the boundary of D. Applying potential theory, the problem can be reformulated as a system of boundary integral equations. We establish the existence and uniqueness of the solution to the system by using the Fredholm theory.展开更多
The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the bas...The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.展开更多
This study is concerned with the numerical approximation of the extended Fisher-Kolmogorov equation with a modified boundary integral method. A key aspect of this formulation is that it relaxes the domain-driven appro...This study is concerned with the numerical approximation of the extended Fisher-Kolmogorov equation with a modified boundary integral method. A key aspect of this formulation is that it relaxes the domain-driven approach of a typical boundary element (BEM) technique. While its discretization keeps faith with the second order accurate BEM formulation, its implementation is element-based. This leads to a local solution of all integral equation and their final assembly into a slender and banded coefficient matrix which is far easier to manipulate numerically. This outcome is much better than working with BEM’s fully populated coefficient matrices resulting from a numerical encounter with the problem domain especially for nonlinear, transient, and heterogeneous problems. Faithful results of high accuracy are achieved when the results obtained herein are compared with those available in literature.展开更多
文摘In this paper, we study a boundary value problem of nonlinear fractional dif- ferential equations of order q (1 〈 q 〈 2) with non-separated integral boundary conditions. Some new existence and uniqueness results are obtained by using some standard fixed point theorems and Leray-Schauder degree theory. Some illustrative examples are also presented. We extend previous results even in the integer case q = 2.
基金Project supported by the National Natural Science Foundation of China (No.10571110)the Natural Science Foundation of Shandong Province of China (No.2003ZX12)
文摘The universal practices have been centralizing on the research of regularization to the direct boundary integal equations (DBIEs). The character is elimination of singularities by using the simple solutions. However, up to now the research of regularization to the first kind integral equations for plane potential problems has never been found in previous literatures. The presentation is mainly devoted to the research on the regularization of the singular boundary integral equations with indirect unknowns. A novel view and idea is presented herein, in which the regularized boundary integral equations with indirect unknowns without including the Cauchy principal value (CPV) and Hadamard-finite-part (HFP) integrals are established for the plane potential problems. With some numerical results, it is shown that the better accuracy and higher efficiency, especially on the boundary, can be achieved by the present system.
文摘By means of Fourier integral transformation of generalized function, the fundamental solution for the bending problem of plates on two-parameter foundation is derived in this paper, and the fundamental solution is expanded into a uniformly convergent series. On the basis of the above work, two boundary integral equations which are suitable to arbitrary shapes and arbitrary boundary conditions are established by means of the Rayleigh-Green identity. The content of the paper provides the powerful theories for the application of BEM in this problem.
文摘DC Resistivity Tomography is a non-linear inversion problem. So far there are mainly two kinds of inversion methods, based on the finite-element method and alpha centers method. In this paper, the disadvantages of these two kinds of methods were analysed,and a new method of forward modeling and inversion (Tomography) based on boundary integral equations was proposed. This scheme successfuly overcomes the difficulties of the two formarly methods. It isn’t necessary to use the linearization approximation and calculate the Jacobi matrix. Numerical modeling results given in this paper showed that the computation speed of our method is fast, and there is not any special requirement for initial model, and satisfying results of tomography can be obtained in the case of great contrast of conductivity. So it has wide applications.
文摘Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical technique of non-analytic continuation and is fully proved by means of the variational principle. The previous three kinds of boundary integral equations with indirect unknowns are discussed thoroughly and it is shown that all previous results are not EBIE.
基金Project supported by the National Natural Science Foundation of China (No.10772106)
文摘A computational model is proposed for short-fiber reinforced materials with the eigenstrain formulation of the boundary integral equations (BIE) and solved with the newly developed boundary point method (BPM). The model is closely derived from the concept of the equivalent inclusion Of Eshelby tensors. Eigenstrains are iteratively determined for each short-fiber embedded in the matrix with various properties via the Eshelby tensors, which can be readily obtained beforehand either through analytical or numerical means. As unknown variables appear only on the boundary of the solution domain, the solution scale of the inhomogeneity problem with the model is greatly reduced. This feature is considered significant because such a traditionally time-consuming problem with inhomogeneity can be solved most cost-effectively compared with existing numerical models of the FEM or the BEM. The numerical examples are presented to compute the overall elastic properties for various short-fiber reinforced composites over a representative volume element (RVE), showing the validity and the effectiveness of the proposed computational modal and the solution procedure.
文摘The properties of the fundamental solution are derived in linear elastostatics. These properties are used to show that the conventional displacement and traction boundary integral equations yield non-unique displacement solutions in a traction boundary value problem. The condition for the existence of unique displacement solutions is proposed for the traction boundary value problem. The degrees of freedom of the displacement solution are removed by the condition to obtain the boundary integral equations of unique solutions for the traction boundary value problems. Numerical example is presented to demonstrate the accuracy and efficiency of the present equations.
文摘Using the method of the boundary integral equation, a set of singular integral equations of the hear transfer problems and the thermo-elastic problems of a crack embedded in a two-dimensional finite body is derived, and then,its numerical method is proposed by the numerical method of the singular integral equations combined with boundary element method. Moreover, the singular nature of temperature gradient field near the crack front is proved by the main-part analysis method of the singular integral equation, and the singular temperature gradients are exactly obtained. Finally, several typical examples calculated.
基金supported by the President Fund of GUCAS(No. O85101CM03)National Natural Science Foundation of China(Nos.90715019 and 40821062)partially by National Basic Research Program of China (No.2004CB418404)
文摘The boundary integral equation method (BIEM) is now widely used in numerical studies on earthquake rupture dynamics, and is proved to be a powerful tool to deal with problems on complex fault system. However, since this method heavily lies on the specific forms of Green's function and only the Green's function in full-space has a closed analytic expression, it is usually limited to a full-space medium. In this study, as a first step to extend this method to an arbitrary complex fault system in half-space, the boundary integral equations (BIEs) for dynamic strike-slip on vertical complex fault system in half-space are derived based on exact Green's function for isotropic and homogeneous half-space. Effect of the geometry of the complex fault system are dealt with carefully. Final BIEs is composed of two parts: contribution from full-space, which has been thoroughly investigated by Aochi and his co-workers by using the Green's function for full-space, and that from free surface, which is studied in detail in this study.
文摘Two fundamental solutions for bending problem of Reissner's plates on twoparameter foundation are derived by means of Fouier integral transformation of generalized function in this paper.On the basis of virtual work principles, three boundary integral equations which fit for arbitrary shapes, loads and boundary conditions of thick plates are presented according to Hu Haichang's theory about Reissner's plates. It provides the fundamental theories for the application of BEM. A numerical example is given for clamped, simply supported and free boundary conditions. The results obtained are satisfactory as compared with the analytical methods.
文摘Based on the fact that the singular boundary integrals in the sense of Cauchy principal value can be represented approximately by the mean values of two companion nearly singular boundary integrals, a vary general approach was developed in the paper. In the approach, the approximate formulation before discretization was constructed to cope with the difficulties encountered in the corner treatment in the formulations of hypersingular boundary integral equations. This makes it possible to solve the hypersingular boundary integral equation numerically in a non regularized form and in a local manner by using conforming C 0 quadratic boundary elements and standard Gaussian quadratures similar to those employed in the conventional displacement BIE formulations. The approximate formulation is very convenient to use because the corner information is comprised naturally in the representations of those approximate integrals. Numerical examples in plane elasticity show that with the present approach, the compatible or better results can be achieved in comparison with those of the conventional BIE formulations.
文摘The exact form of the exterior problem for plane elasticity problems was produced and fully proved by the variational principle.Based on this,the equivalent boundary integral equations(EBIE) with direct variables,which are equivalent to the original boundary value problem,were deduced rigorously.The conventionally prevailing boundary integral equation with direct variables was discussed thoroughly by some examples and it is shown that the previous results are not EBIE.
文摘Based on the Fourier transform, the analytical solution of boundary integral equations formulated for the complex velocity of a 2-D steady linear surface flow is derived. It has been found that before the radiation condition is imposed,free waves appear both far upstream and downstream. In order to cancel the free waves in far upstream regions, the eigensolution of a specific eigenvalue, which satisfies the homogeneous boundary integral equation, is found and superposed to the analytical solution. An example, a submerged vortex, is used to demonstrate the derived analytical solution. Furthermore,an analytical approach to imposing the radiation condition in the numerical solution of boundary integral equations for 2-D steady linear wave problems is proposed.
基金The Russian Foundation for Basic Research(RFBR)Grant No.19-01-00019.
文摘We target here to solve numerically a class of nonlinear fractional two-point boundary value problems involving left-and right-sided fractional derivatives.The main ingredient of the proposed method is to recast the problem into an equivalent system of weakly singular integral equations.Then,a Legendre-based spectral collocation method is developed for solving the transformed system.Therefore,we can make good use of the advantages of the Gauss quadrature rule.We present the construction and analysis of the collocation method.These results can be indirectly applied to solve fractional optimal control problems by considering the corresponding Euler–Lagrange equations.Two numerical examples are given to confirm the convergence analysis and robustness of the scheme.
文摘A complete boundary integral formulation for steady compressible inviscid flows governed by nonlinear equations is established by using ρV as variable. Thus, the dimensionality of the problem to be solved is reduced by one and the computational mesh to be generated is needed only on the boundary of the domain.
基金The work of the author has been supported by the Deutache Forschungsgemeinschaft(DFG) under Grant Ho 1846/1-1
文摘This paper studies several problems , which are potentially relevant for the construction of adaptive numerical schemes. First, biorthogonal spline wavelets on [0,1] are chosen as a starting point for characterizations of functions in Besom spaces B(?)(0,1) with 0<σ<∞ and (1+σ)-1<γ<∞. Such function spaces are known to be related to nonlinear approximation. Then so called restricted nonlinear approximation procedures with respect to Sobolev space norms are considered. Besides characterization results Jackson type estimates for various tree-type and tresholding algorithms are investigated. Finally known approximation results for geometry induced singularity functions of boundary integeral equations are combined with the characterization results for restricted nonlinear approximation to show Besov space regularity results.
基金Project supported by the Program for New Century Excellent Talents in University of Henan Province (HANCET)
文摘The integral-differential equations for three-dimensional planar interfacial cracks of arbitrary shape in transversely isotropic bimaterials were derived by virtue of the Somigliana identity and the fundamental solutions, in which the displacement discontinuities across the crack faces are the unknowns to be determined. The interface is parallel to both the planes of isotropy. The singular behaviors of displacement and stress near the crack border were analyzed and the stress singularity indexes were obtained by integral equation method. The stress intensity factors were expressed in terms of the displacement discontinuities. In the non-oscillatory case, the hyper-singular boundary integral-differential equations were reduced to hyper-singular boundary integral equations similar to those of homogeneously isotropic materials.
基金supported by the grant from the National Natural Science Foundation of China(11301405)supported by the grants from the National Natural Science Foundation of China(11171127 and 10871080)
文摘We consider a kind of scattering problem by a crack F that is buried in a bounded domain D, and we put a point source inside the domain D. This leads to a mixed boundary value problem to the Helmholtz equation in the domain D with a crack Г. Both sides of the crack F are given Dirichlet-impedance boundary conditions, and different boundary condition (Dirichlet, Neumann or Impedance boundary condition) is set on the boundary of D. Applying potential theory, the problem can be reformulated as a system of boundary integral equations. We establish the existence and uniqueness of the solution to the system by using the Fredholm theory.
文摘The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.
文摘This study is concerned with the numerical approximation of the extended Fisher-Kolmogorov equation with a modified boundary integral method. A key aspect of this formulation is that it relaxes the domain-driven approach of a typical boundary element (BEM) technique. While its discretization keeps faith with the second order accurate BEM formulation, its implementation is element-based. This leads to a local solution of all integral equation and their final assembly into a slender and banded coefficient matrix which is far easier to manipulate numerically. This outcome is much better than working with BEM’s fully populated coefficient matrices resulting from a numerical encounter with the problem domain especially for nonlinear, transient, and heterogeneous problems. Faithful results of high accuracy are achieved when the results obtained herein are compared with those available in literature.