期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Acoustic viscoelastic modeling by frequency-domain boundary element method 被引量:1
1
作者 Xizhu Guan Li-Yun Fu Weijia Sun 《Earthquake Science》 CSCD 2017年第2期97-105,共9页
Earth medium is not completely elastic, with its viscosity resulting in attenuation and dispersion of seismic waves. Most viscoelastic numerical simulations are based on the finite-difference and finite-element method... Earth medium is not completely elastic, with its viscosity resulting in attenuation and dispersion of seismic waves. Most viscoelastic numerical simulations are based on the finite-difference and finite-element methods. Targeted at viscoelastic numerical modeling for multilayered media, the constant-Q acoustic wave equation is transformed into the corresponding wave integral representation with its Green's function accounting for viscoelastic coefficients. An efficient alternative for full-waveform solution to the integral equation is proposed in this article by extending conventional frequency-domain boundary element methods to viscoelastic media. The viscoelastic boundary element method enjoys a distinct characteristic of the explicit use of boundary continuity conditions of displacement and traction, leading to a semi-analytical solution with sufficient accuracy for simulating the viscoelastic effect across irregular interfaces. Numerical experiments to study the viscoelastic absorption of different Q values demonstrate the accuracy and applicability of the method. 展开更多
关键词 Viscoelastic media Viscoelastic boundary element method Frequency-domain implementation Viscoelastic numerical modeling
下载PDF
A numerical study for boundary layer current and sheet flow transport induced by a skewed asymmetric wave 被引量:1
2
作者 CHEN Xin ZHANG Zichao WANG Fujun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第9期82-89,共8页
An analytical model with essential parameters given by a two-phase numerical model is utilized to study the net boundary layer current and sediment transport under skewed asymmetric oscillatory sheet flows. The analyt... An analytical model with essential parameters given by a two-phase numerical model is utilized to study the net boundary layer current and sediment transport under skewed asymmetric oscillatory sheet flows. The analytical model is the first instantaneous type model that can consider phase-lag and asymmetric boundary layer development. The two-phase model supplies the essential phase-lead, instantaneous erosion depth and boundary layer development for the analytical model to enhance the understanding of velocity skewness and acceleration skewness in sediment flux and transport rate. The sediment transport difference between onshore and offshore stages caused by velocity skewness or acceleration skewness is shown to illustrate the determination of net sediment transport by the analytical model. In previous studies about sediment transport in skewed asymmetric sheet flows, the generation of net sediment transport is mainly concluded to the phase-lag effect.However, the phase-lag effect is shown important but not enough for the net sediment transport, while the skewed asymmetric boundary layer development generated net boundary layer current and mobile bed effect are key important in the transport process. 展开更多
关键词 analytical model boundary layer current sediment transport sheet flow skewed asymmetric wave
下载PDF
An enhanced treatment of boundary conditions in implicit smoothed particle hydrodynamics 被引量:1
3
作者 Ya-Wei Han Hong-Fu Qiang +1 位作者 Hu Liu Wei-Ran Gao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第1期37-49,共13页
In this work, an enhanced treatment of the solid boundaries is proposed for smoothed particle hydrodynamics with implicit time integration scheme (Implicit SPH). Three types of virtual particles, i.e., boundary part... In this work, an enhanced treatment of the solid boundaries is proposed for smoothed particle hydrodynamics with implicit time integration scheme (Implicit SPH). Three types of virtual particles, i.e., boundary particles, image particles and mirror particles, are used to impose boundary conditions. Boundary particles are fixed on the solid boundary, and each boundary particle is associated with two fixed image particles inside the fluid domain and two fixed mirror particles outside the fluid domain. The image particles take the flow properties through fluid particles with moving least squares (MLS) interpolation and the properties of mirror particles can be obtained by the corresponding image particles. A repulsive force is also applied for boundary particles to prevent fluid particles from unphysical penetra- tion through solid boundaries. The new boundary treatment method has been validated with five numerical examples. All the numerical results show that Implicit SPH with this new boundary-treatment method can obtain accurate results for non-Newtonian fluids as well as Newtonian fluids, and this method is suitable for complex solid boundaries and can be easily extended to 3D problems. 展开更多
关键词 Implicit SPH. boundary conditions. Power-law model Repulsive force MLS interpolation
下载PDF
Electroosmotic flow of Eyring fluid in slit microchannel with slip boundary condition 被引量:1
4
作者 谭臻 齐海涛 蒋晓云 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第6期689-696,共8页
In consideration of the electroosmotic flow in a slit microchannel, the con-stitutive relationship of the Eyring fluid model is utilized. Navier's slip condition is used as the boundary condition. The governing equat... In consideration of the electroosmotic flow in a slit microchannel, the con-stitutive relationship of the Eyring fluid model is utilized. Navier's slip condition is used as the boundary condition. The governing equations are solved analytically, yielding the velocity distribution. The approximate expressions of the velocity distribution are also given and discussed. Furthermore, the effects of the dimensionless parameters, the electrokinetic parameter, and the slip length on the flow are studied numerically, and appropriate conclusions are drawn. 展开更多
关键词 MICROFLUIDICS electroosmotic flow electric double layer Eyring fluid model slip boundary
下载PDF
Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5th-CASAM-N): II. Paradigm Application to a Bernoulli Model Comprising Uncertain Parameters 被引量:1
5
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2022年第1期119-161,共43页
This work presents the application of the recently developed “Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5<sup>th</sup>-CASAM-N)” to a simplified Bernoulli ... This work presents the application of the recently developed “Fifth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (5<sup>th</sup>-CASAM-N)” to a simplified Bernoulli model. The 5<sup>th</sup>-CASAM-N builds upon and incorporates all of the lower-order (i.e., the first-, second-, third-, and fourth-order) adjoint sensitivities analysis methodologies. The Bernoulli model comprises a nonlinear model response, uncertain model parameters, uncertain model domain boundaries and uncertain model boundary conditions, admitting closed-form explicit expressions for the response sensitivities of all orders. Illustrating the specific mechanisms and advantages of applying the 5<sup>th</sup>-CASAM-N for the computation of the response sensitivities with respect to the uncertain parameters and boundaries reveals that the 5<sup>th</sup>-CASAM-N provides a fundamental step towards overcoming the curse of dimensionality in sensitivity and uncertainty analysis. 展开更多
关键词 Fifth-Order Sensitivity Analysis of Bernoulli model Uncertain model Parameters Uncertain model Domain Boundaries Uncertain model boundary Conditions
下载PDF
Slicing and support structure generation for 3D printing directly on B-rep models
6
作者 Kanle Shi Conghui Cai +1 位作者 Zijian Wu Junhai Yong 《Visual Computing for Industry,Biomedicine,and Art》 2019年第1期16-25,共10页
Traditional 3D printing is based on stereolithography or standard tessellation language models,which contain many redundant data and have low precision.This paper proposes a slicing and support structure generation al... Traditional 3D printing is based on stereolithography or standard tessellation language models,which contain many redundant data and have low precision.This paper proposes a slicing and support structure generation algorithm for 3D printing directly on boundary representation(B-rep)models.First,surface slicing is performed by efficiently computing the intersection curves between the faces of the B-rep models and each slicing plane.Then,the normals of the B-rep models are used to detect where the support structures should be located and the support structures are generated.Experimental results show the efficiency and stability of our algorithm. 展开更多
关键词 3D printing boundary representation model SLICING Support structure generation Intersection curve
下载PDF
A Peridynamic Approach for the Evaluation of Metal Ablation under High Temperature
7
作者 Hui Li Liping Zhang +3 位作者 Yixiong Zhang Xiaolong Fu Xuejiao Shao Juan Du 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1997-2019,共23页
In this paper,the evaluations of metal ablation processes under high temperature,i.e.,the Al plate ablated by a laser and a heat carrier and the reactor pressure vessel ablated by a core melt,are studied by a novel pe... In this paper,the evaluations of metal ablation processes under high temperature,i.e.,the Al plate ablated by a laser and a heat carrier and the reactor pressure vessel ablated by a core melt,are studied by a novel peridynamic method.Above all,the peridynamic formulation for the heat conduction problem is obtained by Taylor’s expansion technique.Then,a simple and efficient moving boundary model in the peridynamic framework is proposed to handle the variable geometries,in which the ablated states of material points are described by an additional scalar field.Next,due to the automatic non-interpenetration properties of peridynamic method,a contact algorithm is established to determine the contact relationship between the ablated system and the additional heat carrier.In addition,the corresponding computational procedure is listed in detail.Finally,several numerical examples are carried out and the results verify the validity and accuracy of the present method. 展开更多
关键词 PERIDYNAMICS metal ablation moving boundary model contact algorithm reactor pressure vessel
下载PDF
A boundary layer model for capture of inclusions by steel-slag interface in a turbulent flow
8
作者 Yi-peng Sun Hao-jian Duan Li-feng Zhang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第6期1101-1108,共8页
A boundary layer model was developed to predict the capture of inclusions by steel-slag interface in a turbulent fluid flow,which is based on the detailed analysis of inclusion trajectories.The effective boundary laye... A boundary layer model was developed to predict the capture of inclusions by steel-slag interface in a turbulent fluid flow,which is based on the detailed analysis of inclusion trajectories.The effective boundary layer for inclusion removal was proposed by a statistical method.It is noticed that the capture of inclusions by steel-slag interface is not only dependent on the diameter of inclusions but also related to the local turbulent conditions.In high turbulent flow fields,the transport of inclusions is mainly dominated by the turbulent flow,and thus,the effective boundary layer thickness is mainly affected by the level of turbulent kinetic energy and is almost independent of the inclusion diameter.The inertia of inclusions gradually takes over the stochastic effect of turbulent flow,and the effect of inclusion diameter on effective boundary layer thickness becomes more noticeable with the decrease in the level of turbulent kinetic energy.Besides,the effective boundary layer thickness is more susceptible to the inclusion diameter for larger inclusions due to its greater inertia under the same turbulent condition while it principally depends on the level of turbulent kinetic energy for smaller inclusions.As the characteristic velocity increases,the time for inclusions transport and interaction with steel-slag interface decreases,and thus,the effective boundary layer thickness decreases.Moreover,the graphical user interface was developed by using the cubic spline interpolation for ease of coupling the current boundary layer model with the macro-scale model of a turbulent fluid flow in the metallurgical vessel. 展开更多
关键词 boundary layer model Capture of inclusions steel–slag interface Turbulent flow
原文传递
A boundary surrogate model for micro/nano grooved surface structure applied in turbulence flow control over airfoil
9
作者 Liyue WANG Cong WANG +4 位作者 Shuyue WANG Sheng QIN Gang SUN Bo YOU Yongjian ZHONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第2期62-73,共12页
The application of grooved surface structure is an emerging and effective means in turbulence flow control.However,for a realistic configuration,the global flow field described directly by simple application of massiv... The application of grooved surface structure is an emerging and effective means in turbulence flow control.However,for a realistic configuration,the global flow field described directly by simple application of massive grids makes it unfeasible to simulate.In this paper,a boundary surrogate model reproducing the effect of microscopic near-wall region is proposed to improve computational efficiency.The surrogate model trained with Lattice Boltzmann Method(LBM)considering the rarefied effect based on real micro/nanoflow field is new among literature,which accurately shows flow characteristics of the micro/nano structure.With this approach,numerical simulations via Reynolds-averaged Navier Stokes equations with modified wall boundary condition are performed in subsonic and transonic flow.The results show that micro/nano grooved surface structure has the effect of delaying transition from laminar to turbulence,thus reducing the skin friction significantly.Analysis of turbulence intensity and turbulence kinetic energy shows that the near-wall flow field of grooved airfoil is more stable compared with that of the smooth airfoil.The reducing rate of maximum turbulent intensity reaches 13.39%.The paper shows a perspective for further application of micro/nano groove structure to turbulence flow control in aircraft design by providing an accurate and efficient simulation method. 展开更多
关键词 boundary modeling CFD Drag reduction Flow control MICROSTRUCTURE
原文传递
Building Morphological Characteristics and Their Effect on the Wind in Beijing 被引量:5
10
作者 苗世光 李萍阳 王晓云 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2009年第6期1115-1124,共10页
An urban boundary layer model (UBLM) is improved by incorporating the effect of buildings with a sectional drag coefficient and a height-distributed canopy drag length scale. The improved UBLM is applied to simulate... An urban boundary layer model (UBLM) is improved by incorporating the effect of buildings with a sectional drag coefficient and a height-distributed canopy drag length scale. The improved UBLM is applied to simulate the wind fields over three typical urban blocks over the Beijing area with different height-towidth ratios. For comparisons, the wind fields over the same blocks are simulated by an urban sub-domain scale model resolving the buildings explicitly. The wind fields simulated from the two different methods are in good agreement. Then, two-dimensional building morphological characteristics and urban canopy parameters for Beijing are derived from detailed building height data. Finally, experiements are conducted to investigate the effect of buildings on the wind field in Beijing using the improved UBLM. 展开更多
关键词 building morphological characteristics urban boundary layer model urban canopy model
下载PDF
Quantifying a critical marl thickness for vertical fracture extension using field data and numerical experiments 被引量:1
11
作者 Filiz Afsar Elco Luijendijk 《Geoscience Frontiers》 SCIE CAS CSCD 2019年第6期2135-2145,共11页
In fractured reservoirs characterized by low matrix permeability,fracture networks control the main fluid flow paths.However,in layered reservoirs,the vertical extension of fractures is often restricted to single laye... In fractured reservoirs characterized by low matrix permeability,fracture networks control the main fluid flow paths.However,in layered reservoirs,the vertical extension of fractures is often restricted to single layers.In this study,we explored the effect of changing marl/shale thickness on fracture extension using comprehensive field data and numerical modeling.The field data were sampled from coastal exposures of Liassic limestone-marl/shale alternations in Wales and Somerset(Bristol Channel Basin,UK).The vertical fracture traces of more than 4000 fractures were mapped in detail.Six sections were selected to represent a variety of layer thicknesses.Besides the field data also thin sections were analyzed.Numerical models of fracture extension in a two-layer limestone-marl system were based on field data and laboratory measurements of Young's moduli.The modeled principal stress magnitude σ3 along the lithological contact was used as an indication for fracture extension through marls.Field data exhibit good correlation(R^2=0.76) between fracture extension and marl thickness,the thicker the marl layer the fewer fractures propagate through.The model results show that almost no tensile stress reaches the top of the marl layer when the marls are thicker than 30 cm.For marls that are less than 20 cm,the propagation of stress is more dependent on the stiffness of the marls.The higher the contrast between limestone and marl stiffness the lower the stress that is transmitted into the marl layer.In both model experiments and field data the critical marl thickness for fracture extension is ca.15-20 cm.This quantification of critical marl thicknesses can be used to improve predictions of fracture networks and permeability in layered rocks.Up-or downsampling methods often ignore spatially continuous impermeable layers with thicknesses that are under the detection limit of seismic data.However,ignoring these layers can lead to overestimates of the overall permeability.Therefore,the understanding of how fractures propagate and terminate through impermeable layers will help to improve the characterization of conventional reservoirs. 展开更多
关键词 boundary element modelling Marl/limestone multilayer Layer thickness and stiffness control PERMEABILITY Fractured reservoirs
下载PDF
NUMERICAL SIMULATION OF SOUND RADIATION ON GEARBOX'S HOUSING 被引量:1
12
作者 XIANG Changle WANG Wenping LIU Hui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2008年第3期26-30,共5页
The fluid-structure coupling finite element model and the boundary element model of a complex gearbox's housing are built based on the theory of fluid-structure coupling finite element method and boundary element met... The fluid-structure coupling finite element model and the boundary element model of a complex gearbox's housing are built based on the theory of fluid-structure coupling finite element method and boundary element method. At the same time, the exciting forces of the housing are analyzed and applied to the finite element models. Firstly, vibration of the housing is calculated by the fluid-structure coupling finite element model; secondly, the calculated result is verified by the experiment; finally, sound radiation of the housing is calculated by the boundary element. According to the calculated results, the housing adds some ribs not only to increase the strength, but also to reduce the sound radiation of the housing. At last, the sound radiation of the modified housing is calculated, which shows that the sound radiation of the modified housing with ribs is lower. 展开更多
关键词 Sound radiation Finite element model boundary element model Fluid-structure coupling
下载PDF
2-D CHARACTERISTICS LIKE MODEL AND OPEN BOUNDARY CONDITION FOR UNSTEADY OPEN CHANNEL FLOW MODELING 被引量:3
13
作者 Wang De guan, He Jian jin Hohai University, Nanjing 210098, P.R.China 《Journal of Hydrodynamics》 SCIE EI CSCD 1999年第4期86-98,共13页
A characteristic like model is presented to calculate the two dimensional flow in open channels with finite or infinite dimensions. The comparisons between the computational results and experimental data show the mo... A characteristic like model is presented to calculate the two dimensional flow in open channels with finite or infinite dimensions. The comparisons between the computational results and experimental data show the model to be robust in simulating two dimensional unsteady flows. The comparisons also show the effectiveness of the open boundary condition in simulation of wave propagation process in an infinite domain with computational domain of finite dimension. 展开更多
关键词 characteristic like model open boundary condition unsteady flow
原文传递
Second-Order Adjoint Sensitivity Analysis Methodology for Computing Exactly Response Sensitivities to Uncertain Parameters and Boundaries of Linear Systems: Mathematical Framework 被引量:3
14
作者 Dan Gabriel Cacuci 《American Journal of Computational Mathematics》 2020年第3期329-354,共26页
This work presents the “Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology (2<sup>nd</sup>-CASAM)” for the efficient and exact computation of 1<sup>st</sup>- and 2<sup>... This work presents the “Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology (2<sup>nd</sup>-CASAM)” for the efficient and exact computation of 1<sup>st</sup>- and 2<sup>nd</sup>-order response sensitivities to uncertain parameters and domain boundaries of linear systems. The model’s response (<em>i.e.</em>, model result of interest) is a generic nonlinear function of the model’s forward and adjoint state functions, and also depends on the imprecisely known boundaries and model parameters. In the practically important particular case when the response is a scalar-valued functional of the forward and adjoint state functions characterizing a model comprising N parameters, the 2<sup>nd</sup>-CASAM requires a single large-scale computation using the First-Level Adjoint Sensitivity System (1<sup>st</sup>-LASS) for obtaining all of the first-order response sensitivities, and at most N large-scale computations using the Second-Level Adjoint Sensitivity System (2<sup>nd</sup>-LASS) for obtaining exactly all of the second-order response sensitivities. In contradistinction, forward other methods would require (<em>N</em>2/2 + 3 <em>N</em>/2) large-scale computations for obtaining all of the first- and second-order sensitivities. This work also shows that constructing and solving the 2<sup>nd</sup>-LASS requires very little additional effort beyond the construction of the 1<sup>st</sup>-LASS needed for computing the first-order sensitivities. Solving the equations underlying the 1<sup>st</sup>-LASS and 2<sup>nd</sup>-LASS requires the same computational solvers as needed for solving (<em>i.e.</em>, “inverting”) either the forward or the adjoint linear operators underlying the initial model. Therefore, the same computer software and “solvers” used for solving the original system of equations can also be used for solving the 1<sup>st</sup>-LASS and the 2<sup>nd</sup>-LASS. Since neither the 1<sup>st</sup>-LASS nor the 2<sup>nd</sup>-LASS involves any differentials of the operators underlying the original system, the 1<sup>st</sup>-LASS is designated as a “<u>first-level</u>” (as opposed to a “first-order”) adjoint sensitivity system, while the 2<sup>nd</sup>-LASS is designated as a “<u>second-level</u>” (rather than a “second-order”) adjoint sensitivity system. Mixed second-order response sensitivities involving boundary parameters may arise from all source terms of the 2<sup>nd</sup>-LASS that involve the imprecisely known boundary parameters. Notably, the 2<sup>nd</sup>-LASS encompasses an automatic, inherent, and independent “solution verification” mechanism of the correctness and accuracy of the 2nd-level adjoint functions needed for the efficient and exact computation of the second-order sensitivities. 展开更多
关键词 Second-Order Comprehensive Adjoint Sensitivity Analysis Methodology (2nd-CASAM) First-Level Adjoint Sensitivity System (1st-LASS) Second-Level Adjoint Sensitivity System (2nd-LASS) Operator-Type Response Second-Order Sensitivities to Uncertain model Boundaries Second-Order Sensitivities to Uncertain model Parameters
下载PDF
Growth Ring-dependent Fracture Toughness of Sea Urchin Spines Estimated by Boundary Effect Model
15
作者 Xiaona Liu Simin Liang +2 位作者 Yingying Li Hongmei Ji Xiaowu Li 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第5期1472-1480,共9页
Although the fracture behavior of sea urchin spines has been extensively investigated,there is as yet a lack of quantitative estimation on the effect of growth rings on the fracture properties of sea urchin spines.In ... Although the fracture behavior of sea urchin spines has been extensively investigated,there is as yet a lack of quantitative estimation on the effect of growth rings on the fracture properties of sea urchin spines.In sea urchin spines,much denser pores present in growth rings rather than porous layers.The tensile strength and fracture toughness of sea urchin spine samples with different numbers of growth rings are measured by the Boundary Effect Model(BEM).The experimental results of single-edge notched three-point bending tests indicate that the BEM is an appropriate method to estimate the fracture toughness of the present porous sea urchin spines,and the number of growth rings plays an important role in the fracture properties of spines.Specifically,the tensile strength and fracture toughness of sea urchin spines can be significantly improved with the increase in the number of growth rings,and their fracture toughness can even reach a relatively high value compared with some other porous materials with an identical porosity.The present research findings are expected to provide a fundamental insight into the design of high-performance bionic materials with a highly porous structure. 展开更多
关键词 Sea urchin spine Growth ring boundary Effect model Porous structure Tensile strength Fracture toughness
原文传递
Dynamic Control of Defective Gap Mode Through Defect Location
16
作者 苌磊 李应红 +3 位作者 吴云 张辉洁 王卫民 宋慧敏 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第1期1-5,共5页
A one dimensional model is developed for defective gap mode(DGM)with two types of boundary conditions:conducting mesh and conducting sleeve.For a periodically modulated system without defect,the normalized width of... A one dimensional model is developed for defective gap mode(DGM)with two types of boundary conditions:conducting mesh and conducting sleeve.For a periodically modulated system without defect,the normalized width of spectral gaps equals to the modulation factor,which is consistent with previous studies.For a periodic system with local defects introduced by the boundary conditions,it shows that the conducting-mesh-induced DGM is always well confined by spectral gaps while the conducting-sleeve-induced DGM is not.The defect location can be a useful tool to dynamically control the frequency and spatial periodicity of DGM inside spectral gaps.This controllability can be potentially applied to the interaction between gap eigenmodes and energetic particles in fusion plasmas,and optical microcavities and waveguides in photonic crystals. 展开更多
关键词 defective gap mode boundary condition dynamic control analytical model
下载PDF
An efficient absorbing boundary for finite-difference time-domain field modelling in acoustics
17
作者 WANG Shuozhong (Shanghai University Shanghai 200072)Received 《Chinese Journal of Acoustics》 1997年第2期121-134,共14页
A highly efficient absorbing boundary condition suitable for use in the finitedtherence time-domain (FDTD) modelling of acoustic fields is presented in this paper. The new method seeks a least square esthoate of a tra... A highly efficient absorbing boundary condition suitable for use in the finitedtherence time-domain (FDTD) modelling of acoustic fields is presented in this paper. The new method seeks a least square esthoate of a transfer matrix for field components near truncating boundaries by matrir pseud-inversion. The proposed absorbing boundary is considerably more effective than most ekisting ones. The method is also computationally econondcal and robust.The performance of the new method is shown by numerical experiments on a point-source radiation problem, a wedge dimaction problem, and a scattering problem in which a plane wave is scattered by a circular cylinder. 展开更多
关键词 TIME An efficient absorbing boundary for finite-difference time-domain field modelling in acoustics
原文传递
A unifying approach in simulating the shot peening process using a 3D random representative volume finite element model 被引量:13
18
作者 Dianyin HU Ye GAO +4 位作者 Fanchao MENG Jun SONG Yanfei WANG Mengxi REN Rongqiao WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第4期1592-1602,共11页
Using a modified 3D random representative volume(RV)finite element model,the effects of model dimensions(impact region and interval between impact and representative regions),model shapes(rectangular,square,and c... Using a modified 3D random representative volume(RV)finite element model,the effects of model dimensions(impact region and interval between impact and representative regions),model shapes(rectangular,square,and circular),and peening-induced thermal softening on resultant critical quantities(residual stress,Almen intensity,coverage,and arc height)after shot peening are systematically examined.A new quantity,i.e.,the interval between impact and representative regions,is introduced and its optimal value is first determined to eliminate any boundary effect on shot peening results.Then,model dimensions are respectively assessed for all model shapes to reflect the actual shot peening process,based on which shape-independent critical shot peening quantities are obtained.Further,it is found that thermal softening of the target material due to shot peening leads to variances of the surface residual stress and arc height,demonstrating the necessity of considering the thermal effect in a constitutive material model of shot peeing.Our study clarifies some of the finite element modeling aspects and lays the ground for accurate modeling of the SP process. 展开更多
关键词 Almen intensity boundary effect Finite element modeling Residual stress Shot peening
原文传递
Analysis of the causes of heavy aerosol pollution in Beijing,China:A case study with the WRF-Chem model 被引量:10
19
作者 Hui He Xuexi Tie +4 位作者 Qiang Zhang Xiange Liu Qian Gao Xia Li Yang Gao 《Particuology》 SCIE EI CAS CSCD 2015年第3期32-40,共9页
The causes and variability of a heavy haze episode in the Beijing region was analyzed. During the episode, the PM2.5 concentration reached a peak value of 450 μg/kg on January 18, 2013 and rapidly decreased to 100μg... The causes and variability of a heavy haze episode in the Beijing region was analyzed. During the episode, the PM2.5 concentration reached a peak value of 450 μg/kg on January 18, 2013 and rapidly decreased to 100μg/kg on January 19, 2013, characterizing a large variability in a very short period. This strong vari- ability provides a good opportunity to study the causes of the haze formation. The in situ measurements (including surface meteorological data and vertical structures of the winds, temperature, humidity, and planetary boundary layer (PBL)) together with a chemical/dynamical regional model (WRF-Chem) were used for the analysis. In order to understand the rapid variability of the PM2.5 concentration in the episode, the correlation between the measured meteorological data (including wind speed, PBL height, relative humidity, etc.) and the measured particle concentration (PM2.5 concentration) was studied. In addition, two sensitive model experiments were performed to study the effect of individual contribution from local emissions and regional surrounding emissions to the heavy haze formation. The results suggest that there were two major meteorological factors in controlling the variability of the PM2.5 concentration, namely, surface wind speed and PBL height. During high wind periods, the horizontal transport of aerosol particles played an important role, and the heavy haze was formed when the wind speeds were very weak (less than 1 m/s). Under weak wind conditions, the horizontal transport of aerosol particles was also weak, and the vertical mixing of aerosol particles played an important role. As a result, the PBL height was a major factor in controlling the variability of the PM2.5 concentration. Under the shallow PBL height, aerosol particles were strongly confined near the surface, producing a high surface PM2.5 concentration. The sensitivity model study suggests that the local emissions (emissions from the Beijing region only) were the major cause for the heavy haze events. With only local emissions, the calculated peak value of the PM2.s concentration was 350μg/kg, which accounted for 78% of the measured peak value (450 μg/kg). In contrast, without the local emissions, the calculated peak value of the PM2.5 concentration was only 100 μg/kg, which accounted for 22% of the measured peak value. 展开更多
关键词 PM2.5 in BeijingCauses of heavy hazePlanetary boundary layer (PBL)WRF-Chem model
原文传递
Direct numerical simulation of particle-fluid systems by combining time-driven hard-sphere model and lattice Boltzmann method 被引量:12
20
作者 Limin Wang Guofeng Zhou +2 位作者 Xiaowei Wang Qingang xiong Wei Ge 《Particuology》 SCIE EI CAS CSCD 2010年第4期379-382,共4页
A coupled numerical method for the direct numerical simulation of particle-fluid systems is formulated and implemented, resolving an order of magnitude smaller than particle size. The particle motion is described by t... A coupled numerical method for the direct numerical simulation of particle-fluid systems is formulated and implemented, resolving an order of magnitude smaller than particle size. The particle motion is described by the time-driven hard-sphere model, while the hydrodynamic equations governing fluid flow are solved by the lattice Boltzmann method (LBM), Particle-fluid coupling is realized by an immersed boundary method (IBM), which considers the effect of boundary on surrounding fluid as a restoring force added to the governing equations of the fluid. The proposed scheme is validated in the classical flow-around-cylinder simulations, and preliminary application of this scheme to fluidization is reported, demonstrating it to be a promising computational strategy for better understanding complex behavior in particle-fluid systems. 展开更多
关键词 Direct numerical simulation Immersed boundary method Lattice Boltzmann methodParticle-fluid systems Time-driven hard-sphere model
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部