Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with...Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.展开更多
In this paper, we consider the existence of three nontrivial solutions for a discrete non-linear multiparameter periodic problem involving the p-Laplacian. By using the similar method for the Dirichlet boundary value ...In this paper, we consider the existence of three nontrivial solutions for a discrete non-linear multiparameter periodic problem involving the p-Laplacian. By using the similar method for the Dirichlet boundary value problems in [C. Bonanno and P. Candito, Appl. Anal., 88(4) (2009), pp. 605-616], we construct two new strong maximum principles and obtain that the boundary value problem has three positive solutions for λ and μ in some suitable intervals. The approaches we use are the critical point theory.展开更多
In this paper,two existence theorems are given concerning the following 3-point boundary value problem of second order differential systems with impulses[HL(2:1,1Z;2,1Z]x″(t)=f(t,x(t),x′(t)),t∈(0,1),t≠t_k,k=1,2,.....In this paper,two existence theorems are given concerning the following 3-point boundary value problem of second order differential systems with impulses[HL(2:1,1Z;2,1Z]x″(t)=f(t,x(t),x′(t)),t∈(0,1),t≠t_k,k=1,2,...,m, Δx|_~t=t_k =I_k(x(t_k)),k=1,2,...,m, Δx′|_~t=t_k =J_k(x(t_k),x′(t_k)),k=1,2,...,m, x(0)=0,x(1)=αx(η).展开更多
We study the existence of solutions to the second order three-point boundary value problem:{x″(t)+f(t,x(t),x′(t))=0,t≠ti,△x(ti)=Ii(x(ti),x′(ti)),i=1,2,…,k,△x′(ti)=Ji(x(ti),x′(t)),i=1...We study the existence of solutions to the second order three-point boundary value problem:{x″(t)+f(t,x(t),x′(t))=0,t≠ti,△x(ti)=Ii(x(ti),x′(ti)),i=1,2,…,k,△x′(ti)=Ji(x(ti),x′(t)),i=1,2,…,k,x(0)=0=x(1)-αx(η),where 0〈η〈1,α∈R,and f:[0,1]×R×R→R,Ii:R×R→R,Ji:R×R→R(i=1,2,…,k)are continuous. Our results is new and different from previous results. In particular, we obtain the Green function of the problem, which makes the problem simpler.展开更多
Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1...Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.展开更多
In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = ...In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = 0 and αu(η) = u(1), where η ∈ (0, 1), α ∈ [0, 1), and λ is a positive parameter. The nonlinear term f(t, u) is nonnegative, and may be singular at t = 0, t = 1, and u = 0. By the fixed point index theory and approximation method, we establish that there exists λ* ∈ (0, +∞], such that the above problem has at least two positive solutions for any λ ∈ (0, λ*) under certain conditions on the nonlinear term f.展开更多
In this paper,we are concerned with the existence of multiple positive solutions to a second-order three-point boundary value problem on the half-line.The results are obtained by the Leggett-Williams fixed point theorem.
We mainly study the existence of positive solutions for the following third order singular multi-point boundary value problem{x^(3)(t) + f(t, x(t), x′(t)) = 0, 0 〈 t 〈 1,x(0)-∑i=1^m1 αi x(ξi) = 0...We mainly study the existence of positive solutions for the following third order singular multi-point boundary value problem{x^(3)(t) + f(t, x(t), x′(t)) = 0, 0 〈 t 〈 1,x(0)-∑i=1^m1 αi x(ξi) = 0, x′(0)-∑i=1^m2 βi x′(ηi) = 0, x′(1)=0,where 0 ≤ ai≤∑i=1^m1 αi 〈 1, i = 1, 2, ···, m1, 0 〈 ξ1〈 ξ2〈 ··· 〈 ξm1〈 1, 0 ≤βj≤∑i^m2=1βi〈1,J=1,2, ···, m2, 0 〈 η1〈 η2〈 ··· 〈 ηm2〈 1. And we obtain some necessa βi 〈=11, j = 1,ry and sufficient conditions for the existence of C^1[0, 1] and C^2[0, 1] positive solutions by constructing lower and upper solutions and by using the comparison theorem. Our nonlinearity f(t, x, y)may be singular at x, y, t = 0 and/or t = 1.展开更多
In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the met...In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.展开更多
In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in...In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in resonance cases. The proposed approach is based on the Krasnoselskii's fixed point theorem and the coincidence degree.展开更多
The existence of solutions for second order three-point boundary value problems with nonlinear growth at resonance is studied by using Mawhin continuation theorem. The result shows that theorem 1 and 2 at least have o...The existence of solutions for second order three-point boundary value problems with nonlinear growth at resonance is studied by using Mawhin continuation theorem. The result shows that theorem 1 and 2 at least have one solution in c1[0,1]展开更多
In this paper, by using the fixed-point index theory, we study the existence of sign-changing solution of some three-point boundary value problems {y ''(t) + f(y) = 0, t ∈ [0, 1], y' (0) = 0, y(1) = αy(...In this paper, by using the fixed-point index theory, we study the existence of sign-changing solution of some three-point boundary value problems {y ''(t) + f(y) = 0, t ∈ [0, 1], y' (0) = 0, y(1) = αy(η), where 0 < α < 1, 0 < η < 1, f : R → R is continuous, strictly increasing and f(0) = 0.展开更多
In this paper, a fractional multi-point boundary value problem is considered. By using the fixed point index theory and Krein-Rutman theorem, some results on existence are obtained.
The present paper tackles two-point boundary value problems for fourth-order differential equations as follows:Several existence theorems on multiple positive solutions to the problems are obtained, and some examples ...The present paper tackles two-point boundary value problems for fourth-order differential equations as follows:Several existence theorems on multiple positive solutions to the problems are obtained, and some examples are given to show the validity of these results.展开更多
Sufficient conditions for the existence of at least two positive solutions of a nonlinear m -points boundary value problems are established. The results are obtained by using a new fixed point theorem in cones. An exa...Sufficient conditions for the existence of at least two positive solutions of a nonlinear m -points boundary value problems are established. The results are obtained by using a new fixed point theorem in cones. An example is provided to illustrate the theory.展开更多
A class of third-order three-point boundary value problems is considered, where the nonlinear term is a Caratheodory function. By introducing a height function and considering the imtegration of this height function, ...A class of third-order three-point boundary value problems is considered, where the nonlinear term is a Caratheodory function. By introducing a height function and considering the imtegration of this height function, an existence theorem of solution is proved when the limit growth function exists. The main tools are the Lebesgue dominated convergence theorem and the Schauder fixed point theorem.展开更多
A class of higher-order four-point boundary value problems with a p-Laplacian operator is studied. By use of a fixed point theorem in cones, sufficient conditions for the existence of positive solutions for the bounda...A class of higher-order four-point boundary value problems with a p-Laplacian operator is studied. By use of a fixed point theorem in cones, sufficient conditions for the existence of positive solutions for the boundary value problems are obtained.展开更多
Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) ...Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) gamma = 0 (- a < x < b, 0 epsilon 1), where f(x ; 0) has several multiple zero points in ( - n, b). the necessary conditions for exhibiting resonance is given, and the uniformly valid asymptotic solutions and the estimations of remainder terms are obtained.展开更多
By using fixed point theorem, multiple positive solutions for some fourth- order multi-point boundary value problems with nonlinearity depending on all order derivatives are obtained. The associated Green's functions...By using fixed point theorem, multiple positive solutions for some fourth- order multi-point boundary value problems with nonlinearity depending on all order derivatives are obtained. The associated Green's functions are also given.展开更多
A class of boundary value problems for a third-order differential equation with a turning point is considered. Using the method of multiple scales and others, the uniformly valid asymptotic expansion of solution for t...A class of boundary value problems for a third-order differential equation with a turning point is considered. Using the method of multiple scales and others, the uniformly valid asymptotic expansion of solution for the boundary value problem is constructed.展开更多
文摘Accurately approximating higher order derivatives is an inherently difficult problem. It is shown that a random variable shape parameter strategy can improve the accuracy of approximating higher order derivatives with Radial Basis Function methods. The method is used to solve fourth order boundary value problems. The use and location of ghost points are examined in order to enforce the extra boundary conditions that are necessary to make a fourth-order problem well posed. The use of ghost points versus solving an overdetermined linear system via least squares is studied. For a general fourth-order boundary value problem, the recommended approach is to either use one of two novel sets of ghost centers introduced here or else to use a least squares approach. When using either ghost centers or least squares, the random variable shape parameter strategy results in significantly better accuracy than when a constant shape parameter is used.
基金Supported by NSFC(11326127,11101335)NWNULKQN-11-23the Fundamental Research Funds for the Gansu Universities
文摘In this paper, we consider the existence of three nontrivial solutions for a discrete non-linear multiparameter periodic problem involving the p-Laplacian. By using the similar method for the Dirichlet boundary value problems in [C. Bonanno and P. Candito, Appl. Anal., 88(4) (2009), pp. 605-616], we construct two new strong maximum principles and obtain that the boundary value problem has three positive solutions for λ and μ in some suitable intervals. The approaches we use are the critical point theory.
文摘In this paper,two existence theorems are given concerning the following 3-point boundary value problem of second order differential systems with impulses[HL(2:1,1Z;2,1Z]x″(t)=f(t,x(t),x′(t)),t∈(0,1),t≠t_k,k=1,2,...,m, Δx|_~t=t_k =I_k(x(t_k)),k=1,2,...,m, Δx′|_~t=t_k =J_k(x(t_k),x′(t_k)),k=1,2,...,m, x(0)=0,x(1)=αx(η).
基金Supported by the National Natural Science Foundation of China(10371006)
文摘We study the existence of solutions to the second order three-point boundary value problem:{x″(t)+f(t,x(t),x′(t))=0,t≠ti,△x(ti)=Ii(x(ti),x′(ti)),i=1,2,…,k,△x′(ti)=Ji(x(ti),x′(t)),i=1,2,…,k,x(0)=0=x(1)-αx(η),where 0〈η〈1,α∈R,and f:[0,1]×R×R→R,Ii:R×R→R,Ji:R×R→R(i=1,2,…,k)are continuous. Our results is new and different from previous results. In particular, we obtain the Green function of the problem, which makes the problem simpler.
文摘Studies the existence of solutions of nonlinear two point boundary value problems for nonlinear 4n-th-order differential equationy (4n)=f(t,y,y′,y″,...,y (4n-1))(a)with the boundary conditions g 2i(y (2i)(a),y (2i+1)(a))=0,h 2i(y (2i)(c),y (2i+1)(c))=0,(i=0,1,...,2n-1)(b) where the functions f, g i and h i are continuous with certain monotone properties. For the boundary value problems of nonlinear nth order differential equationy (n)=f(t,y,y′,y″,...,y (n-1))many results have been given at the present time. But the existence of solutions of boundary value problem (a),(b) studied in this paper has not been covered by the above researches. Moreover, the corollary of the important theorem in this paper, i.e. existence of solutions of the boundary value problem.y (4n)=f(t,y,y′,y″,...,y (4n-1)) a 2iy (2i)(a)+a 2i+1y (2i+1)(a)=b 2i,c 2iy (2i)(c)+c 2i+1y (2i+1)(c)=d 2i,(i=0,1,...2n-1)has not been dealt with in previous works.
基金supported by the National Natural Science Foundation of China (11071149, 10771128)the NSF of Shanxi Province (2006011002, 2010011001-1)
文摘In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = 0 and αu(η) = u(1), where η ∈ (0, 1), α ∈ [0, 1), and λ is a positive parameter. The nonlinear term f(t, u) is nonnegative, and may be singular at t = 0, t = 1, and u = 0. By the fixed point index theory and approximation method, we establish that there exists λ* ∈ (0, +∞], such that the above problem has at least two positive solutions for any λ ∈ (0, λ*) under certain conditions on the nonlinear term f.
基金Supported by the NNSF of China(10871116)Supported by the NSFSP of China(ZR2010AM005)
文摘In this paper,we are concerned with the existence of multiple positive solutions to a second-order three-point boundary value problem on the half-line.The results are obtained by the Leggett-Williams fixed point theorem.
基金supported by the National Science Foundation of Shandong Province(ZR2009AM004)
文摘We mainly study the existence of positive solutions for the following third order singular multi-point boundary value problem{x^(3)(t) + f(t, x(t), x′(t)) = 0, 0 〈 t 〈 1,x(0)-∑i=1^m1 αi x(ξi) = 0, x′(0)-∑i=1^m2 βi x′(ηi) = 0, x′(1)=0,where 0 ≤ ai≤∑i=1^m1 αi 〈 1, i = 1, 2, ···, m1, 0 〈 ξ1〈 ξ2〈 ··· 〈 ξm1〈 1, 0 ≤βj≤∑i^m2=1βi〈1,J=1,2, ···, m2, 0 〈 η1〈 η2〈 ··· 〈 ηm2〈 1. And we obtain some necessa βi 〈=11, j = 1,ry and sufficient conditions for the existence of C^1[0, 1] and C^2[0, 1] positive solutions by constructing lower and upper solutions and by using the comparison theorem. Our nonlinearity f(t, x, y)may be singular at x, y, t = 0 and/or t = 1.
基金supported by the National Natural Science Foundation of China (11132004 and 51078145)the Natural Science Foundation of Guangdong Province (9251064101000016)
文摘In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.
基金Project supported by Foundation of Major Project of ScienceTechnology of Chinese Education Ministy,NSF of Education Committee of Jiangsu Province
文摘In this paper, we consider existence of single or multiple positive solutions of three-point boundary value problems involving one-dimensional p-Laplacian. We then study existence of solutions when the problems are in resonance cases. The proposed approach is based on the Krasnoselskii's fixed point theorem and the coincidence degree.
文摘The existence of solutions for second order three-point boundary value problems with nonlinear growth at resonance is studied by using Mawhin continuation theorem. The result shows that theorem 1 and 2 at least have one solution in c1[0,1]
基金Supported by the Foundation of the Office of Science and Technology of Henan(122102310373)Supported by the NSF of Education Department of Henan Province(12B110025)
文摘In this paper, by using the fixed-point index theory, we study the existence of sign-changing solution of some three-point boundary value problems {y ''(t) + f(y) = 0, t ∈ [0, 1], y' (0) = 0, y(1) = αy(η), where 0 < α < 1, 0 < η < 1, f : R → R is continuous, strictly increasing and f(0) = 0.
文摘In this paper, a fractional multi-point boundary value problem is considered. By using the fixed point index theory and Krein-Rutman theorem, some results on existence are obtained.
基金The Postdoctoral Science Research Foundation of Zhengzhou University.
文摘The present paper tackles two-point boundary value problems for fourth-order differential equations as follows:Several existence theorems on multiple positive solutions to the problems are obtained, and some examples are given to show the validity of these results.
文摘Sufficient conditions for the existence of at least two positive solutions of a nonlinear m -points boundary value problems are established. The results are obtained by using a new fixed point theorem in cones. An example is provided to illustrate the theory.
文摘A class of third-order three-point boundary value problems is considered, where the nonlinear term is a Caratheodory function. By introducing a height function and considering the imtegration of this height function, an existence theorem of solution is proved when the limit growth function exists. The main tools are the Lebesgue dominated convergence theorem and the Schauder fixed point theorem.
基金Sponsored by the National Natural Science Foundation of China (10671012)Doctoral Program Foundation of Education Ministry of China(20050007011)
文摘A class of higher-order four-point boundary value problems with a p-Laplacian operator is studied. By use of a fixed point theorem in cones, sufficient conditions for the existence of positive solutions for the boundary value problems are obtained.
文摘Boundary value problem; for third-order ordinary differential equations with turning points are studied as follows : epsilon gamma ' ' + f(x ; epsilon) gamma ' + g(x ; epsilon) gamma ' +h(x ; epsilon) gamma = 0 (- a < x < b, 0 epsilon 1), where f(x ; 0) has several multiple zero points in ( - n, b). the necessary conditions for exhibiting resonance is given, and the uniformly valid asymptotic solutions and the estimations of remainder terms are obtained.
文摘By using fixed point theorem, multiple positive solutions for some fourth- order multi-point boundary value problems with nonlinearity depending on all order derivatives are obtained. The associated Green's functions are also given.
基金Project supported by the National Natural Science Foundation of China (No. 40876010)the Main Direction Program of the Knowledge Innovation Project of Chinese Academy of Sciences (No. KZCX2-YW-Q03-08)+3 种基金the Research and Development Special Fund for Public Welfare Industry (meteorol-ogy) (No. GYHY200806010)the LASG State Key Laboratory Special Fundthe Foundation of E-Institutes of Shanghai Municipal Education Commission (No. E03004)the Natural Science Foundation of Zhejiang Province (No. Y6090164)
文摘A class of boundary value problems for a third-order differential equation with a turning point is considered. Using the method of multiple scales and others, the uniformly valid asymptotic expansion of solution for the boundary value problem is constructed.