We study some nonlinear waves in a viscous plasma which is confined in a finite cylinder.By averaging the physical quantities on the radial direction in some cases,we reduce this system to a simple one-dimensional mod...We study some nonlinear waves in a viscous plasma which is confined in a finite cylinder.By averaging the physical quantities on the radial direction in some cases,we reduce this system to a simple one-dimensional model.It seems that the effects of the bounded geometry(the radius of the cylinder in this case)can be included in the damping coefficient.We notice that the amplitudes of both Korteweg–de Vries(KdV)solitary waves and dark envelope solitary waves decrease exponentially as time increases from the particle-in-cell(PIC)simulation.The dependence of damping coefficient on the cylinder radius and the viscosity coefficient is also obtained numerically and analytically.Both are in good agreement.By using a definition,we give a condition whether a solitary wave exists in a bounded plasma.Moreover,some of potential applications in laboratory experiments are suggested.展开更多
POM97, an oceanic model, has been used for the first time to the numerical study on the tidal waves of the as Regions around Taiwan. In this paper, we have got the result that the semidiurnal tidal waves of these area...POM97, an oceanic model, has been used for the first time to the numerical study on the tidal waves of the as Regions around Taiwan. In this paper, we have got the result that the semidiurnal tidal waves of these area mainly are the co-operating tides which come from the south of 23'N of the western Pacific. Those semidiurnal tidal waves affecting the Taiwan Straits come respectively from the south and the north entrance of the channel, and the north tidal wave is stronger than the south one. The strongest tidal field is the area from the Meizhou Bay to the Xinhua Bay along the coast of Fujian Province, where the biggest amplitude of the M2 partial tide can reach 240 cm. The strongest tidal cur- rent fields lie in the Penghu watercourse, where the maximum velocity of the M2 partial tide can arrive at 196 m/s. In the horizontal structure of the tidal currets, we have found that there is a stream dot in the north of the channel, besides, there still exist four new ones. As for the vertical structure, it mainly is biassed to the right at the surface, and to the left near the bottom layer.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11965019 and 11847142).
文摘We study some nonlinear waves in a viscous plasma which is confined in a finite cylinder.By averaging the physical quantities on the radial direction in some cases,we reduce this system to a simple one-dimensional model.It seems that the effects of the bounded geometry(the radius of the cylinder in this case)can be included in the damping coefficient.We notice that the amplitudes of both Korteweg–de Vries(KdV)solitary waves and dark envelope solitary waves decrease exponentially as time increases from the particle-in-cell(PIC)simulation.The dependence of damping coefficient on the cylinder radius and the viscosity coefficient is also obtained numerically and analytically.Both are in good agreement.By using a definition,we give a condition whether a solitary wave exists in a bounded plasma.Moreover,some of potential applications in laboratory experiments are suggested.
文摘POM97, an oceanic model, has been used for the first time to the numerical study on the tidal waves of the as Regions around Taiwan. In this paper, we have got the result that the semidiurnal tidal waves of these area mainly are the co-operating tides which come from the south of 23'N of the western Pacific. Those semidiurnal tidal waves affecting the Taiwan Straits come respectively from the south and the north entrance of the channel, and the north tidal wave is stronger than the south one. The strongest tidal field is the area from the Meizhou Bay to the Xinhua Bay along the coast of Fujian Province, where the biggest amplitude of the M2 partial tide can reach 240 cm. The strongest tidal cur- rent fields lie in the Penghu watercourse, where the maximum velocity of the M2 partial tide can arrive at 196 m/s. In the horizontal structure of the tidal currets, we have found that there is a stream dot in the north of the channel, besides, there still exist four new ones. As for the vertical structure, it mainly is biassed to the right at the surface, and to the left near the bottom layer.