Some properties of Sugeno measure are further discussed, which is a kind of typical nonadditive measure. The definitions and properties of gλ random variable and its distribution function, expected value, and varianc...Some properties of Sugeno measure are further discussed, which is a kind of typical nonadditive measure. The definitions and properties of gλ random variable and its distribution function, expected value, and variance are then presented. Markov inequality, Chebyshev's inequality and the Khinchine's Law of Large Numbers on Sugeno measure space are also proven. Furthermore, the concepts of empirical risk functional, expected risk functional and the strict consistency of ERM principle on Sugeno measure space are proposed. According to these properties and concepts, the key theorem of learning theory, the bounds on the rate of convergence of learning process and the relations between these bounds and capacity of the set of functions on Sugeno measure space are given.展开更多
In this paper,we introduce the Bézier variant of two new families of generalized Bernstein type operators.We establish a direct approximation by means of the Ditzian-Totik modulus of smoothness and a global appro...In this paper,we introduce the Bézier variant of two new families of generalized Bernstein type operators.We establish a direct approximation by means of the Ditzian-Totik modulus of smoothness and a global approximation theorem in terms of second order modulus of continuity.By means of construction of suitable functions and the method of Bojanic and Cheng,we give the rate of convergence for absolutely continuous functions having a derivative equivalent to a bounded variation function.展开更多
In this paper we obtain the uniform bounds on the rate of convergence in the central limit theorem (CLT) for a class of two-parameter martingale difference sequences under certain conditions.
Branched continued fractions are one of the multidimensional generalization of the continued fractions. Branched continued fractions with not equivalent variables are an analog of the regular C-fractions for multiple ...Branched continued fractions are one of the multidimensional generalization of the continued fractions. Branched continued fractions with not equivalent variables are an analog of the regular C-fractions for multiple power series. We consider 1-periodic branched continued fraction of the special form which is an analog fraction with not equivalent variables if the values of that variables are fixed. We establish an analog of the parabola theorem for that fraction and estimate truncation error bounds for that fractions at some restrictions. We also propose to use weight coefficients for obtaining different parabolic regions for the same fraction without any additional restriction for first element.展开更多
This paper addresses the generalized linear complementarity problem (GLCP) over a polyhedral cone. To solve the problem, we first equivalently convert the problem into an affine variational inequalities problem over...This paper addresses the generalized linear complementarity problem (GLCP) over a polyhedral cone. To solve the problem, we first equivalently convert the problem into an affine variational inequalities problem over a closed polyhedral cone, and then propose a new type of method to solve the GLCP based on the error bound estimation. The global and R-linear convergence rate is established. The numerical experiments show the efficiency of the method.展开更多
It is well known that the nonparametric estimation of the regression function is highly sensitive to the presence of even a small proportion of outliers in the data.To solve the problem of typical observations when th...It is well known that the nonparametric estimation of the regression function is highly sensitive to the presence of even a small proportion of outliers in the data.To solve the problem of typical observations when the covariates of the nonparametric component are functional,the robust estimates for the regression parameter and regression operator are introduced.The main propose of the paper is to consider data-driven methods of selecting the number of neighbors in order to make the proposed processes fully automatic.We use thek Nearest Neighbors procedure(kNN)to construct the kernel estimator of the proposed robust model.Under some regularity conditions,we state consistency results for kNN functional estimators,which are uniform in the number of neighbors(UINN).Furthermore,a simulation study and an empirical application to a real data analysis of octane gasoline predictions are carried out to illustrate the higher predictive performances and the usefulness of the kNN approach.展开更多
The present paper deals with the new type of Gamma operators, here we estimate the rate of pointwise convergence of these new Gamma type operators Mn,k for functions of bounded variation, by using some techniques of p...The present paper deals with the new type of Gamma operators, here we estimate the rate of pointwise convergence of these new Gamma type operators Mn,k for functions of bounded variation, by using some techniques of probability theory.展开更多
For left truncated and right censored data, based on a strong representation of the product-limit estimator of the survival function, we derive the sufficient and necessary condition for the rate of strong uniform con...For left truncated and right censored data, based on a strong representation of the product-limit estimator of the survival function, we derive the sufficient and necessary condition for the rate of strong uniform convergence of the product-limit estimator over the whole line.展开更多
Let{Xn:n≥1}be a sequence of independent random variables with common general error distribution GED(v)with shape parameter v>0,and let Mn,r denote the r-th largest order statistics of X1,X2,...,Xn.With different n...Let{Xn:n≥1}be a sequence of independent random variables with common general error distribution GED(v)with shape parameter v>0,and let Mn,r denote the r-th largest order statistics of X1,X2,...,Xn.With different normalizing constants the distributional expansions and the uniform convergence rates of normalized powered order statistics|Mn,r|p are established.An alternative method is presented to estimate the probability of the r-th extremes.Numerical analyses are provided to support the main results.展开更多
This study presents the uniform convergence rate for spot volatility estimators based on delta sequences.Kernel and Fourier-based estimators are examples of this type of estimator.We also present the uniform convergen...This study presents the uniform convergence rate for spot volatility estimators based on delta sequences.Kernel and Fourier-based estimators are examples of this type of estimator.We also present the uniform convergence rates for kernel and Fourier-based estimators of spot volatility as applications of the main result.展开更多
Consider the partly linear regression model , where y <SUB>i </SUB>’s are responses, are known and nonrandom design points, is a compact set in the real line , β = (β <SUB>1<...Consider the partly linear regression model , where y <SUB>i </SUB>’s are responses, are known and nonrandom design points, is a compact set in the real line , β = (β <SUB>1</SUB>, ··· , β <SUB>p </SUB>)' is an unknown parameter vector, g(·) is an unknown function and {ε <SUB>i </SUB>} is a linear process, i.e., , where e <SUB>j </SUB>are i.i.d. random variables with zero mean and variance . Drawing upon B-spline estimation of g(·) and least squares estimation of β, we construct estimators of the autocovariances of {ε <SUB>i </SUB>}. The uniform strong convergence rate of these estimators to their true values is then established. These results not only are a compensation for those of [23], but also have some application in modeling error structure. When the errors {ε <SUB>i </SUB>} are an ARMA process, our result can be used to develop a consistent procedure for determining the order of the ARMA process and identifying the non-zero coeffcients of the process. Moreover, our result can be used to construct the asymptotically effcient estimators for parameters in the ARMA error process.展开更多
Let {Xn; n ≥ 1} be a sequence of independent and identically distributed U[0,1]-distributed random variables. Define the uniform empirical process Fn(t) = n^-1/2 ∑^ni=1 (I{xi≤t} - t), 0 ≤ t 〈 1, ││Fn││ = ...Let {Xn; n ≥ 1} be a sequence of independent and identically distributed U[0,1]-distributed random variables. Define the uniform empirical process Fn(t) = n^-1/2 ∑^ni=1 (I{xi≤t} - t), 0 ≤ t 〈 1, ││Fn││ = sup0≤t≤ 1 │Fn(t)│. In this paper, the exact convergence rates of a general law of weighted infinite series of E{││Fn││ -εg^s(n)}+ are obtained.展开更多
A unified efficient algorithm framework of proximal-based decomposition methods has been proposed for monotone variational inequalities in 2012,while only global convergence is proved at the same time.In this paper,we...A unified efficient algorithm framework of proximal-based decomposition methods has been proposed for monotone variational inequalities in 2012,while only global convergence is proved at the same time.In this paper,we give a unified proof on theO(1/t)iteration complexity,together with the linear convergence rate for this kind of proximal-based decomposition methods.Besides theε-optimal iteration complexity result defined by variational inequality,the non-ergodic relative error of adjacent iteration points is also proved to decrease in the same order.Further,the linear convergence rate of this algorithm framework can be constructed based on some special variational inequality properties,without necessary strong monotone conditions.展开更多
In this paper,we establish a unified framework to study the almost sure global convergence and the expected convergencerates of a class ofmini-batch stochastic(projected)gradient(SG)methods,including two popular types...In this paper,we establish a unified framework to study the almost sure global convergence and the expected convergencerates of a class ofmini-batch stochastic(projected)gradient(SG)methods,including two popular types of SG:stepsize diminished SG and batch size increased SG.We also show that the standard variance uniformly bounded assumption,which is frequently used in the literature to investigate the convergence of SG,is actually not required when the gradient of the objective function is Lipschitz continuous.Finally,we show that our framework can also be used for analyzing the convergence of a mini-batch stochastic extragradient method for stochastic variational inequality.展开更多
Chaundy and Jolliffe proved that if {a n } is a non-increasing (monotonic) real sequence with lim n →∞ a n = 0, then a necessary and sufficient condition for the uniform convergence of the series ∑∞ n=1 a n sin nx...Chaundy and Jolliffe proved that if {a n } is a non-increasing (monotonic) real sequence with lim n →∞ a n = 0, then a necessary and sufficient condition for the uniform convergence of the series ∑∞ n=1 a n sin nx is lim n →∞ na n = 0. We generalize (or weaken) the monotonic condition on the coefficient sequence {a n } in this classical result to the so-called mean value bounded variation condition and prove that the generalized condition cannot be weakened further. We also establish an analogue to the generalized Chaundy-Jolliffe theorem in the complex space.展开更多
Let {X, X_n; n≥1} be i.i.d.r.v.'s taking values in a separable Banach space (B,||·||)such that EX=0 and Ef^2(X)<+∞, ?∈6B~*, and S_n=X_1+…+X_n for n≥1. The purposeof this paper is to study the rates of...Let {X, X_n; n≥1} be i.i.d.r.v.'s taking values in a separable Banach space (B,||·||)such that EX=0 and Ef^2(X)<+∞, ?∈6B~*, and S_n=X_1+…+X_n for n≥1. The purposeof this paper is to study the rates of convergence to zero of P(inf||Sn/(2nloglogn)^(1/2)-x||≥ε) and P(sup inf||S_k/(2kloglogk)^(1/2)-x||≥ε) (?ε>0) under precisely necessary and sufficientconditions. We also give new necessary and sufficient conditions for X to satisfy the boundand compact law of the iterated logarithm, respectively. Our results improve some resultsof Darling and Robbins (1967) as well as Davis (1968) even in the case B=R.展开更多
In this paper we give weaker conditions to ensure the strong uniform consis-tency of multi-dimensional nearest neighbor (N.N.) estimates with non-uniform kernel andobtain the convergence rates of these estimates on an...In this paper we give weaker conditions to ensure the strong uniform consis-tency of multi-dimensional nearest neighbor (N.N.) estimates with non-uniform kernel andobtain the convergence rates of these estimates on an arbitrary bounded set. The ratescan not be improved in some sense. Obviously, the problem of strong convergence rates ata given point is its special case. The range of applications of estimates is extended.展开更多
This paper investigates double sampling series derivatives for bivariate functions defined on R2 that are in the Bernstein space. For this sampling series, we estimate some of the pointwise and uniform bounds when the...This paper investigates double sampling series derivatives for bivariate functions defined on R2 that are in the Bernstein space. For this sampling series, we estimate some of the pointwise and uniform bounds when the function satisfies some decay conditions. The truncated series of this formula allow us to approximate any order of partial derivatives for function from Bernstein space using only a finite number of samples from the function itself. This sampling formula will be useful in the approximation theory and its applications, especially after having the truncation error well-established. Examples with tables and figures are given at the end of the paper to illustrate the advantages of this formula.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.60573069)the Natural Science Foundation of Hebei Province(Grant No.F2004000129)+1 种基金the Key Scientific Research Project of Hebei Education Department(Grant No.2005001D)the Key Scientific and Technical Research Project of the Ministry of Education of China(Grant No.20602).
文摘Some properties of Sugeno measure are further discussed, which is a kind of typical nonadditive measure. The definitions and properties of gλ random variable and its distribution function, expected value, and variance are then presented. Markov inequality, Chebyshev's inequality and the Khinchine's Law of Large Numbers on Sugeno measure space are also proven. Furthermore, the concepts of empirical risk functional, expected risk functional and the strict consistency of ERM principle on Sugeno measure space are proposed. According to these properties and concepts, the key theorem of learning theory, the bounds on the rate of convergence of learning process and the relations between these bounds and capacity of the set of functions on Sugeno measure space are given.
基金This work is supported by the National Natural Science Foundation of China(11601266)the Natural Science Foundation of Fujian Province of China(2016J05017)the Program for New Century Excellent Talents in Fujian Province University and the Program for Outstanding Youth Scientific Research Talents in Fujian Province University.
文摘In this paper,we introduce the Bézier variant of two new families of generalized Bernstein type operators.We establish a direct approximation by means of the Ditzian-Totik modulus of smoothness and a global approximation theorem in terms of second order modulus of continuity.By means of construction of suitable functions and the method of Bojanic and Cheng,we give the rate of convergence for absolutely continuous functions having a derivative equivalent to a bounded variation function.
文摘In this paper we obtain the uniform bounds on the rate of convergence in the central limit theorem (CLT) for a class of two-parameter martingale difference sequences under certain conditions.
文摘Branched continued fractions are one of the multidimensional generalization of the continued fractions. Branched continued fractions with not equivalent variables are an analog of the regular C-fractions for multiple power series. We consider 1-periodic branched continued fraction of the special form which is an analog fraction with not equivalent variables if the values of that variables are fixed. We establish an analog of the parabola theorem for that fraction and estimate truncation error bounds for that fractions at some restrictions. We also propose to use weight coefficients for obtaining different parabolic regions for the same fraction without any additional restriction for first element.
基金supported by National Natural Science Foundation of China (No. 10771120)
文摘This paper addresses the generalized linear complementarity problem (GLCP) over a polyhedral cone. To solve the problem, we first equivalently convert the problem into an affine variational inequalities problem over a closed polyhedral cone, and then propose a new type of method to solve the GLCP based on the error bound estimation. The global and R-linear convergence rate is established. The numerical experiments show the efficiency of the method.
文摘It is well known that the nonparametric estimation of the regression function is highly sensitive to the presence of even a small proportion of outliers in the data.To solve the problem of typical observations when the covariates of the nonparametric component are functional,the robust estimates for the regression parameter and regression operator are introduced.The main propose of the paper is to consider data-driven methods of selecting the number of neighbors in order to make the proposed processes fully automatic.We use thek Nearest Neighbors procedure(kNN)to construct the kernel estimator of the proposed robust model.Under some regularity conditions,we state consistency results for kNN functional estimators,which are uniform in the number of neighbors(UINN).Furthermore,a simulation study and an empirical application to a real data analysis of octane gasoline predictions are carried out to illustrate the higher predictive performances and the usefulness of the kNN approach.
文摘The present paper deals with the new type of Gamma operators, here we estimate the rate of pointwise convergence of these new Gamma type operators Mn,k for functions of bounded variation, by using some techniques of probability theory.
基金the Postdoctoral Programme Foundation and the National Natural ScienceFoundation of China(No. 10071092).
文摘For left truncated and right censored data, based on a strong representation of the product-limit estimator of the survival function, we derive the sufficient and necessary condition for the rate of strong uniform convergence of the product-limit estimator over the whole line.
文摘Let{Xn:n≥1}be a sequence of independent random variables with common general error distribution GED(v)with shape parameter v>0,and let Mn,r denote the r-th largest order statistics of X1,X2,...,Xn.With different normalizing constants the distributional expansions and the uniform convergence rates of normalized powered order statistics|Mn,r|p are established.An alternative method is presented to estimate the probability of the r-th extremes.Numerical analyses are provided to support the main results.
文摘This study presents the uniform convergence rate for spot volatility estimators based on delta sequences.Kernel and Fourier-based estimators are examples of this type of estimator.We also present the uniform convergence rates for kernel and Fourier-based estimators of spot volatility as applications of the main result.
基金the Knowledge Innovation Project of Chinese Academy of Sciences (No.KZCX2-SW-118)the National Natural Science Foundation of China (No.70221001).
文摘Consider the partly linear regression model , where y <SUB>i </SUB>’s are responses, are known and nonrandom design points, is a compact set in the real line , β = (β <SUB>1</SUB>, ··· , β <SUB>p </SUB>)' is an unknown parameter vector, g(·) is an unknown function and {ε <SUB>i </SUB>} is a linear process, i.e., , where e <SUB>j </SUB>are i.i.d. random variables with zero mean and variance . Drawing upon B-spline estimation of g(·) and least squares estimation of β, we construct estimators of the autocovariances of {ε <SUB>i </SUB>}. The uniform strong convergence rate of these estimators to their true values is then established. These results not only are a compensation for those of [23], but also have some application in modeling error structure. When the errors {ε <SUB>i </SUB>} are an ARMA process, our result can be used to develop a consistent procedure for determining the order of the ARMA process and identifying the non-zero coeffcients of the process. Moreover, our result can be used to construct the asymptotically effcient estimators for parameters in the ARMA error process.
基金Supported by National Natural Science Foundation of China (Grant No. 10901138), National Science Fundation of Zhejiang Province (Grant No. R6090034) and the Young Excellent Talent Foundation of Huaiyin Normal University Thanks are due to the referees for valuable comments that have led to improvements in this work.
文摘Let {Xn; n ≥ 1} be a sequence of independent and identically distributed U[0,1]-distributed random variables. Define the uniform empirical process Fn(t) = n^-1/2 ∑^ni=1 (I{xi≤t} - t), 0 ≤ t 〈 1, ││Fn││ = sup0≤t≤ 1 │Fn(t)│. In this paper, the exact convergence rates of a general law of weighted infinite series of E{││Fn││ -εg^s(n)}+ are obtained.
基金The work was supported in part by the Shanghai Youth Science and Technology Talent Sail Plan(No.15YF1403400)the National Natural Science Foundation of China(No.61321064).
文摘A unified efficient algorithm framework of proximal-based decomposition methods has been proposed for monotone variational inequalities in 2012,while only global convergence is proved at the same time.In this paper,we give a unified proof on theO(1/t)iteration complexity,together with the linear convergence rate for this kind of proximal-based decomposition methods.Besides theε-optimal iteration complexity result defined by variational inequality,the non-ergodic relative error of adjacent iteration points is also proved to decrease in the same order.Further,the linear convergence rate of this algorithm framework can be constructed based on some special variational inequality properties,without necessary strong monotone conditions.
基金the National Natural Science Foundation of China(Nos.11871135 and 11801054)the Fundamental Research Funds for the Central Universities(No.DUT19K46)。
文摘In this paper,we establish a unified framework to study the almost sure global convergence and the expected convergencerates of a class ofmini-batch stochastic(projected)gradient(SG)methods,including two popular types of SG:stepsize diminished SG and batch size increased SG.We also show that the standard variance uniformly bounded assumption,which is frequently used in the literature to investigate the convergence of SG,is actually not required when the gradient of the objective function is Lipschitz continuous.Finally,we show that our framework can also be used for analyzing the convergence of a mini-batch stochastic extragradient method for stochastic variational inequality.
基金supported by National Sciences and Engineering Research Council of CanadaNational Natural Science Foundation of China (Grant No. 10471130)
文摘Chaundy and Jolliffe proved that if {a n } is a non-increasing (monotonic) real sequence with lim n →∞ a n = 0, then a necessary and sufficient condition for the uniform convergence of the series ∑∞ n=1 a n sin nx is lim n →∞ na n = 0. We generalize (or weaken) the monotonic condition on the coefficient sequence {a n } in this classical result to the so-called mean value bounded variation condition and prove that the generalized condition cannot be weakened further. We also establish an analogue to the generalized Chaundy-Jolliffe theorem in the complex space.
基金Project supported by the National Natural Science Foundation of China.
文摘Let {X, X_n; n≥1} be i.i.d.r.v.'s taking values in a separable Banach space (B,||·||)such that EX=0 and Ef^2(X)<+∞, ?∈6B~*, and S_n=X_1+…+X_n for n≥1. The purposeof this paper is to study the rates of convergence to zero of P(inf||Sn/(2nloglogn)^(1/2)-x||≥ε) and P(sup inf||S_k/(2kloglogk)^(1/2)-x||≥ε) (?ε>0) under precisely necessary and sufficientconditions. We also give new necessary and sufficient conditions for X to satisfy the boundand compact law of the iterated logarithm, respectively. Our results improve some resultsof Darling and Robbins (1967) as well as Davis (1968) even in the case B=R.
基金Supported by the National Natural Natural Science Foundation of China.
文摘In this paper we give weaker conditions to ensure the strong uniform consis-tency of multi-dimensional nearest neighbor (N.N.) estimates with non-uniform kernel andobtain the convergence rates of these estimates on an arbitrary bounded set. The ratescan not be improved in some sense. Obviously, the problem of strong convergence rates ata given point is its special case. The range of applications of estimates is extended.
文摘This paper investigates double sampling series derivatives for bivariate functions defined on R2 that are in the Bernstein space. For this sampling series, we estimate some of the pointwise and uniform bounds when the function satisfies some decay conditions. The truncated series of this formula allow us to approximate any order of partial derivatives for function from Bernstein space using only a finite number of samples from the function itself. This sampling formula will be useful in the approximation theory and its applications, especially after having the truncation error well-established. Examples with tables and figures are given at the end of the paper to illustrate the advantages of this formula.