In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the B...In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves.展开更多
An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential e...An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential equationwhich is regarded as an extended elliptic equation and whose degree Υ is expanded to the case of r>4.The efficiency ofthe method is demonstrated by the KdV equation and the variant Boussinesq equations.The results indicate that themethod not only offers all solutions obtained by using Fu's and Fan's methods,but also some new solutions.展开更多
This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton)...This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equations.展开更多
Numerical models based on the boundary element method and Boussinesq equation are used to simulate the wave transform over a submerged bar for regular waves.In the boundary-element-method model the linear element is u...Numerical models based on the boundary element method and Boussinesq equation are used to simulate the wave transform over a submerged bar for regular waves.In the boundary-element-method model the linear element is used,and the integrals are computed by analytical formulas.The Boussinesq-equation model is the well-known FUNWAVE from the University of Delaware.We compare the numerical free surface displacements with the laboratory data on both gentle slope and steep slope,and find that both the models simulate the wave transform well.We further compute the agreement indexes between the numerical result and laboratory data,and the results support that the boundary-element-method model has a stable good performance,which is due to the fact that its governing equation has no restriction on nonlinearity and dispersion as compared with Boussinesq equation.展开更多
This paper uses the Adomian Decomposition Method (ADM) to solve Boussinesq equations using Maple. The Boussinesq approximation for water waves is a weakly nonlinear and long-wave approximation in fluid dynamics. The a...This paper uses the Adomian Decomposition Method (ADM) to solve Boussinesq equations using Maple. The Boussinesq approximation for water waves is a weakly nonlinear and long-wave approximation in fluid dynamics. The approximation is named after Joseph Boussinesq, who developed it in response to John Scott Russell’s observation of a wave of translation (also known as solitary wave or soliton). Bossinesq’s article from 1872 introduced the equations that are now known as the Boussinesq equations. Numerical methods are commonly utilized to solve nonlinear equation systems. In this paper, we investigate a nonlinear singly perturbed advection-diffusion problem. Using the usual Adomian Decomposition Method, we formulate an approximate linear advection-diffusion problem and investigate several practical numerical approaches for solving it (ADM). The Adomian Decomposition Method (ADM) is a powerful tool for numerical simulations and approximation analytic solutions. The Adomian Decomposition Method (ADM) is used to solve nonlinear advection differential equations using Maple by illustrating numerous examples. The findings are presented in the form of tables and graphs for several examples. For various examples, the findings are presented in the form of tables and graphs. The difference between the precise and numerical solutions indicates the Maple program solution’s efficacy, as well as the ease and speed with which it was acquired.展开更多
The generalized Boussinesq equation that represents a group of important nonlinear equations possesses many interesting properties. Multi-symplectic formulations of the generalized Boussinesq equation in the Hamilton ...The generalized Boussinesq equation that represents a group of important nonlinear equations possesses many interesting properties. Multi-symplectic formulations of the generalized Boussinesq equation in the Hamilton space are introduced in this paper. And then an implicit multi-symplectic scheme equivalent to the multi-symplectic Box scheme is constructed to solve the partial differential equations (PDEs) derived from the generalized Boussinesq equation. Finally, the numerical experiments on the soliton solutions of the generalized Boussinesq equation are reported. The results show that the multi-symplectic method is an efficient algorithm with excellent long-time numerical behaviors for nonlinear partial differential equations.展开更多
In this study, we applied the variational iteration method to solve the Boussinesq time equation. Bossiness’s article from 1872 introduced the equations that are now known as the Boussinesq equations. Numerical metho...In this study, we applied the variational iteration method to solve the Boussinesq time equation. Bossiness’s article from 1872 introduced the equations that are now known as the Boussinesq equations. Numerical methods are commonly utilized to solve nonlinear equation systems. Several research papers have documented the values of the variational iteration method and its applications for various categories of differential equations. A comparison of the exact and numerical solutions was obtained using the variational iteration method. The variational iteration method shows that the proposed method is very effective and convenient. The results are shown for different specific cases of the problem. The variational iteration method is useful in numerical simulations and approximate analytical solutions, and it is used to resolve nonlinear differential equations in various situations using Maple. For example, the linear Boussinesq equation was resolved using the variational iteration method. By comparing the numerical results, we found that the variable repetition method produced accurate results and was close to the exact solution, allowing it to be widely applied to the Boussinesq equation. This proves the effectiveness of the method and the capability to quickly and effectively obtain the numerical number solution related to the exact solution using the Maple 18 program. Additionally, the outcomes are extremely precise.展开更多
Trial equation method is a powerful tool for obtaining exact solutions of nonlinear differential equations. In this paper, the improved Boussinesq is reduced to an ordinary differential equation under the travelling w...Trial equation method is a powerful tool for obtaining exact solutions of nonlinear differential equations. In this paper, the improved Boussinesq is reduced to an ordinary differential equation under the travelling wave transformation. Trial equation method and the theory of complete discrimination system for polynomial are used to establish exact solutions of the improved Boussinesq equation.展开更多
The (G'/G)-expansion method is simple and powerful mathematical tool for constructing traveling wave solutions of nonlinear evolution equations which arise in engineering sciences, mathematical physics and real ti...The (G'/G)-expansion method is simple and powerful mathematical tool for constructing traveling wave solutions of nonlinear evolution equations which arise in engineering sciences, mathematical physics and real time application fields. In this article, we have obtained exact traveling wave solutions of the nonlinear partial differential equation, namely, the fourth order Boussinesq equation involving parameters via the (G'/G)-expansion method. In this method, the general solution of the second order linear ordinary differential equation with constant coefficients is implemented. Further, the solitons and periodic solutions are described through three different families. In addition, some of obtained solutions are described in the figures with the aid of commercial software Maple.展开更多
In this paper, the(2+1)-dimensional perturbed Boussinesq equation is transformed into a series of two-dimensional(2 D) similarity reduction equations by using the approximate symmetry method. A step-by-step proce...In this paper, the(2+1)-dimensional perturbed Boussinesq equation is transformed into a series of two-dimensional(2 D) similarity reduction equations by using the approximate symmetry method. A step-by-step procedure is used to acquire Jacobi elliptic function solutions to these similarity equations, which generate the truncated series solutions to the original perturbed Boussinesq equation. Aside from some singular area, the series solutions are convergent when the perturbation parameter is diminished.展开更多
We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of ...We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of the sub-equation after constructing the nonlinear transformation and constraint conditions. Accordingly, we obtain twenty families of exact solutions such as analytical and singular solitons and singular periodic waves. In addition, we discuss the impact of system parameters on wave propagation.展开更多
文摘In this article, a novel (G'/G)-expansion method is proposed to search for the traveling wave solutions of nonlinear evolution equations. We construct abundant traveling wave solutions involving parameters to the Boussinesq equation by means of the suggested method. The performance of the method is reliable and useful, and gives more general exact solutions than the existing methods. The new (G'/G)-expansion method provides not only more general forms of solutions but also cuspon, peakon, soliton, and periodic waves.
基金National Natural Science Foundation of China under Grant No.10672053
文摘An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential equationwhich is regarded as an extended elliptic equation and whose degree Υ is expanded to the case of r>4.The efficiency ofthe method is demonstrated by the KdV equation and the variant Boussinesq equations.The results indicate that themethod not only offers all solutions obtained by using Fu's and Fan's methods,but also some new solutions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10871117 and 10571110)
文摘This paper studies the coupled Burgers equation and the high-order Boussinesq-Burgers equation. The Hirota bilinear method is applied to show that the two equations are completely integrable. Multiple-kink (soliton) solutions and multiple-singular-kink (soliton) solutions are derived for the two equations.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 41106019 and 41176016)the Knowledge Innovation Programs of the Chinese Academy of Sciences (Grant No. kzcx2-yw-201)+1 种基金the Public Science and Technology Research Funds Projects of Ocean (Grant No. 201105018)the Natural Science Foundation of Jiangsu Province,China (Grant No. BK2012315)
文摘Numerical models based on the boundary element method and Boussinesq equation are used to simulate the wave transform over a submerged bar for regular waves.In the boundary-element-method model the linear element is used,and the integrals are computed by analytical formulas.The Boussinesq-equation model is the well-known FUNWAVE from the University of Delaware.We compare the numerical free surface displacements with the laboratory data on both gentle slope and steep slope,and find that both the models simulate the wave transform well.We further compute the agreement indexes between the numerical result and laboratory data,and the results support that the boundary-element-method model has a stable good performance,which is due to the fact that its governing equation has no restriction on nonlinearity and dispersion as compared with Boussinesq equation.
文摘This paper uses the Adomian Decomposition Method (ADM) to solve Boussinesq equations using Maple. The Boussinesq approximation for water waves is a weakly nonlinear and long-wave approximation in fluid dynamics. The approximation is named after Joseph Boussinesq, who developed it in response to John Scott Russell’s observation of a wave of translation (also known as solitary wave or soliton). Bossinesq’s article from 1872 introduced the equations that are now known as the Boussinesq equations. Numerical methods are commonly utilized to solve nonlinear equation systems. In this paper, we investigate a nonlinear singly perturbed advection-diffusion problem. Using the usual Adomian Decomposition Method, we formulate an approximate linear advection-diffusion problem and investigate several practical numerical approaches for solving it (ADM). The Adomian Decomposition Method (ADM) is a powerful tool for numerical simulations and approximation analytic solutions. The Adomian Decomposition Method (ADM) is used to solve nonlinear advection differential equations using Maple by illustrating numerous examples. The findings are presented in the form of tables and graphs for several examples. For various examples, the findings are presented in the form of tables and graphs. The difference between the precise and numerical solutions indicates the Maple program solution’s efficacy, as well as the ease and speed with which it was acquired.
基金Project supported by the National Natural Science Foundation of China (Nos.10572119,10772147,10632030)the Doctoral Program Foundation of Education Ministry of China (No.20070699028)+1 种基金the Natural Science Foundation of Shaanxi Province of China (No.2006A07)the Open Foundation of State Key Laboratory of Structural Analysis of Industrial Equipment,Dalian University of Technology.
文摘The generalized Boussinesq equation that represents a group of important nonlinear equations possesses many interesting properties. Multi-symplectic formulations of the generalized Boussinesq equation in the Hamilton space are introduced in this paper. And then an implicit multi-symplectic scheme equivalent to the multi-symplectic Box scheme is constructed to solve the partial differential equations (PDEs) derived from the generalized Boussinesq equation. Finally, the numerical experiments on the soliton solutions of the generalized Boussinesq equation are reported. The results show that the multi-symplectic method is an efficient algorithm with excellent long-time numerical behaviors for nonlinear partial differential equations.
文摘In this study, we applied the variational iteration method to solve the Boussinesq time equation. Bossiness’s article from 1872 introduced the equations that are now known as the Boussinesq equations. Numerical methods are commonly utilized to solve nonlinear equation systems. Several research papers have documented the values of the variational iteration method and its applications for various categories of differential equations. A comparison of the exact and numerical solutions was obtained using the variational iteration method. The variational iteration method shows that the proposed method is very effective and convenient. The results are shown for different specific cases of the problem. The variational iteration method is useful in numerical simulations and approximate analytical solutions, and it is used to resolve nonlinear differential equations in various situations using Maple. For example, the linear Boussinesq equation was resolved using the variational iteration method. By comparing the numerical results, we found that the variable repetition method produced accurate results and was close to the exact solution, allowing it to be widely applied to the Boussinesq equation. This proves the effectiveness of the method and the capability to quickly and effectively obtain the numerical number solution related to the exact solution using the Maple 18 program. Additionally, the outcomes are extremely precise.
文摘Trial equation method is a powerful tool for obtaining exact solutions of nonlinear differential equations. In this paper, the improved Boussinesq is reduced to an ordinary differential equation under the travelling wave transformation. Trial equation method and the theory of complete discrimination system for polynomial are used to establish exact solutions of the improved Boussinesq equation.
文摘The (G'/G)-expansion method is simple and powerful mathematical tool for constructing traveling wave solutions of nonlinear evolution equations which arise in engineering sciences, mathematical physics and real time application fields. In this article, we have obtained exact traveling wave solutions of the nonlinear partial differential equation, namely, the fourth order Boussinesq equation involving parameters via the (G'/G)-expansion method. In this method, the general solution of the second order linear ordinary differential equation with constant coefficients is implemented. Further, the solitons and periodic solutions are described through three different families. In addition, some of obtained solutions are described in the figures with the aid of commercial software Maple.
基金Project supported by the National Natural Science Foundation of China(Grant No.11505094)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20150984)
文摘In this paper, the(2+1)-dimensional perturbed Boussinesq equation is transformed into a series of two-dimensional(2 D) similarity reduction equations by using the approximate symmetry method. A step-by-step procedure is used to acquire Jacobi elliptic function solutions to these similarity equations, which generate the truncated series solutions to the original perturbed Boussinesq equation. Aside from some singular area, the series solutions are convergent when the perturbation parameter is diminished.
文摘We study exact solutions to (1 + 1)-dimensional generalized Boussinesq equation with time-space dispersion term by making use of improved sub-equation method, and analyse the dynamical behavior and exact solutions of the sub-equation after constructing the nonlinear transformation and constraint conditions. Accordingly, we obtain twenty families of exact solutions such as analytical and singular solitons and singular periodic waves. In addition, we discuss the impact of system parameters on wave propagation.