In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have differ...In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes.展开更多
The method and basic structure of object─oriented knowledge representation are presented in detail and the hierarchical structurc of object description is explained Based on object─oriented technology.the gear box c...The method and basic structure of object─oriented knowledge representation are presented in detail and the hierarchical structurc of object description is explained Based on object─oriented technology.the gear box concept design expert cistem of NC miller (GBCDLS) has been developed and applied to practical use.Moreover. the design principlc and techniques of GBCDES are discussed and analyzed. and the main functions of GBCDES are described. From the results of applications.it can be seen that GBCDES is effective and successful.展开更多
It is difficult to parallelize a subsistent sequential algorithm. Through analyzing the sequential algorithm of a Global Atmospheric Data Objective Analysis System, this article puts forward a distributed parallel alg...It is difficult to parallelize a subsistent sequential algorithm. Through analyzing the sequential algorithm of a Global Atmospheric Data Objective Analysis System, this article puts forward a distributed parallel algorithm that statically distributes data on a massively parallel processing (MPP) computer. The algorithm realizes distributed parailelization by extracting the analysis boxes and model grid point Iatitude rows with leaped steps, and by distributing the data to different processors. The parallel algorithm achieves good load balancing, high parallel efficiency, and low parallel cost. Performance experiments on a MPP computer arc also presented.展开更多
在目标检测领域中,基于交并比(intersection over union, IoU)的系列损失函数存在一定的局限性,使得边界框回归的精度和稳定性有待进一步提升。为此提出了一种基于非线性高斯平方距离的边界框回归损失函数。首先综合考虑了边界框中重叠...在目标检测领域中,基于交并比(intersection over union, IoU)的系列损失函数存在一定的局限性,使得边界框回归的精度和稳定性有待进一步提升。为此提出了一种基于非线性高斯平方距离的边界框回归损失函数。首先综合考虑了边界框中重叠性、中心点距离和长宽比3个因素,将边界框建模为高斯分布;然后提出一种高斯平方距离来衡量概率分布之间的差距;最后设计了符合优化趋势的非线性函数,将高斯平方距离转化为有利于神经网络学习的损失函数。实验结果表明,与IoU损失相比,所提方法在掩膜区域卷积神经网络、一阶全卷积目标检测器和自适应特征选择目标检测器上的平均精度均值分别提高了0.3%、1.1%和2.3%,证明了该方法能有效提升目标检测的性能,同时有利于高精度边界框的回归。展开更多
文摘In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes.
文摘The method and basic structure of object─oriented knowledge representation are presented in detail and the hierarchical structurc of object description is explained Based on object─oriented technology.the gear box concept design expert cistem of NC miller (GBCDLS) has been developed and applied to practical use.Moreover. the design principlc and techniques of GBCDES are discussed and analyzed. and the main functions of GBCDES are described. From the results of applications.it can be seen that GBCDES is effective and successful.
文摘It is difficult to parallelize a subsistent sequential algorithm. Through analyzing the sequential algorithm of a Global Atmospheric Data Objective Analysis System, this article puts forward a distributed parallel algorithm that statically distributes data on a massively parallel processing (MPP) computer. The algorithm realizes distributed parailelization by extracting the analysis boxes and model grid point Iatitude rows with leaped steps, and by distributing the data to different processors. The parallel algorithm achieves good load balancing, high parallel efficiency, and low parallel cost. Performance experiments on a MPP computer arc also presented.
文摘在目标检测领域中,基于交并比(intersection over union, IoU)的系列损失函数存在一定的局限性,使得边界框回归的精度和稳定性有待进一步提升。为此提出了一种基于非线性高斯平方距离的边界框回归损失函数。首先综合考虑了边界框中重叠性、中心点距离和长宽比3个因素,将边界框建模为高斯分布;然后提出一种高斯平方距离来衡量概率分布之间的差距;最后设计了符合优化趋势的非线性函数,将高斯平方距离转化为有利于神经网络学习的损失函数。实验结果表明,与IoU损失相比,所提方法在掩膜区域卷积神经网络、一阶全卷积目标检测器和自适应特征选择目标检测器上的平均精度均值分别提高了0.3%、1.1%和2.3%,证明了该方法能有效提升目标检测的性能,同时有利于高精度边界框的回归。