Traditional construction techniques have a significant impact on the environment and are associated with long construction durations in the construction of municipal rainwater pipelines.Pipe jacking technology,a new t...Traditional construction techniques have a significant impact on the environment and are associated with long construction durations in the construction of municipal rainwater pipelines.Pipe jacking technology,a new type of pipeline construction method,enables non-excavation construction and can address the shortcomings of traditional pipeline construction.This article analyzes the concept and application advantages of pipe jacking technology.Combining engineering examples,it explores the application strategies of pipe jacking technology in the construction process of municipal rainwater pipelines for reference.展开更多
To shorten the existing box culvert demolition construction period and ensure the normal operation of the railway, the jacking-out construction method was adopted. The ABAQUS finite element software was used to establ...To shorten the existing box culvert demolition construction period and ensure the normal operation of the railway, the jacking-out construction method was adopted. The ABAQUS finite element software was used to establish a three-dimensional model of the box culvert and soil body of the relying project, and three excavation thickness (0m, 1 m, 2 m) were used as the main variation parameters for numerical analysis and research, and the change law of the box culvert itself and soil body stress during the culvert jacking out process was obtained. The results show that the jacking force-displacement curves of the three working conditions can be divided into two stages, and the jacking force reaches the maximum value at the moment when the static friction turns into sliding friction at the end of the first stage. The stress distribution at the bottom slab of the box culvert in the jacking process is approximately normal, and the stress decreases with the increase of the roadbed excavation thickness. The increase of the roadbed excavation thickness can reduce the soil pressure on the side of the box culvert and effectively reduce the deformation of the roadbed in the jacking-out process. The deformation of the roadbed during the jacking process can be reduced by increasing the thickness of the roadbed excavation.展开更多
In the construction of municipal road drainage projects,pipe jacking construction is a relatively common construction method.This construction technology can avoid a large amount of excavation work,improve drainage co...In the construction of municipal road drainage projects,pipe jacking construction is a relatively common construction method.This construction technology can avoid a large amount of excavation work,improve drainage construction efficiency,avoid large-scale damage to the road surface,and exert small traffic impact.Therefore,it is currently widely used in drainage construction,but judging from the current actual application situation,there are still many problems that require further improvement.This article mainly analyzes the advantages of and current technical problems in pipe jacking construction technology in detail,explores corresponding solutions,and lays a foundation for the optimization of municipal road drainage engineering construction.展开更多
By using site observation data and establishing 3D model using ANSYS software, this paper has discussed the strain change of stratum stress during process of jacking-in and the impact of machine head on ground surface...By using site observation data and establishing 3D model using ANSYS software, this paper has discussed the strain change of stratum stress during process of jacking-in and the impact of machine head on ground surface under different frontal resistances. Analysis of the two cases shows that soil pressure reaches its maximum point when the soil is right above machine head, and soil stress will gradually decline when machine head passes over it. It also shows that impact brought by pipe-jacking construction on stress change of the surrounding soil is limited. The thesis suggest that road surface should be consolidated and soil condition be improved before construction to prevent loss and disaster caused by road surface deformation, jacking force can be increased so that jacking efficiency can be enhanced when ground stratum is well filled with soil, but the frontal resistance facing machine head should be equal to surrounding soil pressure in order to avoid rise of ground surface.展开更多
For a pipejacking, the jacking force is critical to balance the resistance force and to move the pipe string forwards. The driving mechanism of a curved pipejacking is more complicated than a straight-line pipejacking...For a pipejacking, the jacking force is critical to balance the resistance force and to move the pipe string forwards. The driving mechanism of a curved pipejacking is more complicated than a straight-line pipejacking, and its jacking force is also more difficult to be determined. The paper theoretically studies the jacking force of a curved pipejacking by considering the static equilibrium of earth pressure, resistance at cutting face, friction at pipe surface, and the driving force behind the pipe string. The derived theoretical formula can be used to estimate the driving forces of a straight-line or a curved pipejacking. Case study was performed by applying the theoretical and empirical formulae. After calibration, the corrected formula is more accurate and more applicable.展开更多
In Japan when urban infrastructures need to be constructed, the difficulty of utilizing the ground or shallow strata will lead to a more frequent use of the deep strata. The common construction methods are open-cut, p...In Japan when urban infrastructures need to be constructed, the difficulty of utilizing the ground or shallow strata will lead to a more frequent use of the deep strata. The common construction methods are open-cut, pipe jacking, and shield methods. In recent years, a new pipe jacking method has been established that can be adapted to 20 m below the ground or more. Using this method, the drivage machine and the jacking pipe continue to move an underground until the completion of the driving. Therefore an over-cutting area (so-called tail-void) must be formed to lower the friction between the ground and the pipe. The tail-void is filled with lubrications. However, because the stress release from the ground continues to advance when the tail-void is formed, hence there are some challenges required to cope with the stability of the surrounding ground. In order to utilize the pipe jacking method in the deeper strata layers, the theory, analysis and installation of tail-void have to be systemized, and such systematic data must be stored. Therefore, the conditions of tail-void in the deep pipe jacking method are discussed using numerical analyses.展开更多
文摘Traditional construction techniques have a significant impact on the environment and are associated with long construction durations in the construction of municipal rainwater pipelines.Pipe jacking technology,a new type of pipeline construction method,enables non-excavation construction and can address the shortcomings of traditional pipeline construction.This article analyzes the concept and application advantages of pipe jacking technology.Combining engineering examples,it explores the application strategies of pipe jacking technology in the construction process of municipal rainwater pipelines for reference.
文摘To shorten the existing box culvert demolition construction period and ensure the normal operation of the railway, the jacking-out construction method was adopted. The ABAQUS finite element software was used to establish a three-dimensional model of the box culvert and soil body of the relying project, and three excavation thickness (0m, 1 m, 2 m) were used as the main variation parameters for numerical analysis and research, and the change law of the box culvert itself and soil body stress during the culvert jacking out process was obtained. The results show that the jacking force-displacement curves of the three working conditions can be divided into two stages, and the jacking force reaches the maximum value at the moment when the static friction turns into sliding friction at the end of the first stage. The stress distribution at the bottom slab of the box culvert in the jacking process is approximately normal, and the stress decreases with the increase of the roadbed excavation thickness. The increase of the roadbed excavation thickness can reduce the soil pressure on the side of the box culvert and effectively reduce the deformation of the roadbed in the jacking-out process. The deformation of the roadbed during the jacking process can be reduced by increasing the thickness of the roadbed excavation.
文摘In the construction of municipal road drainage projects,pipe jacking construction is a relatively common construction method.This construction technology can avoid a large amount of excavation work,improve drainage construction efficiency,avoid large-scale damage to the road surface,and exert small traffic impact.Therefore,it is currently widely used in drainage construction,but judging from the current actual application situation,there are still many problems that require further improvement.This article mainly analyzes the advantages of and current technical problems in pipe jacking construction technology in detail,explores corresponding solutions,and lays a foundation for the optimization of municipal road drainage engineering construction.
基金the Science and Technology Foundation of Sichuan Department of Land and Resources(SCDLR0609)
文摘By using site observation data and establishing 3D model using ANSYS software, this paper has discussed the strain change of stratum stress during process of jacking-in and the impact of machine head on ground surface under different frontal resistances. Analysis of the two cases shows that soil pressure reaches its maximum point when the soil is right above machine head, and soil stress will gradually decline when machine head passes over it. It also shows that impact brought by pipe-jacking construction on stress change of the surrounding soil is limited. The thesis suggest that road surface should be consolidated and soil condition be improved before construction to prevent loss and disaster caused by road surface deformation, jacking force can be increased so that jacking efficiency can be enhanced when ground stratum is well filled with soil, but the frontal resistance facing machine head should be equal to surrounding soil pressure in order to avoid rise of ground surface.
文摘For a pipejacking, the jacking force is critical to balance the resistance force and to move the pipe string forwards. The driving mechanism of a curved pipejacking is more complicated than a straight-line pipejacking, and its jacking force is also more difficult to be determined. The paper theoretically studies the jacking force of a curved pipejacking by considering the static equilibrium of earth pressure, resistance at cutting face, friction at pipe surface, and the driving force behind the pipe string. The derived theoretical formula can be used to estimate the driving forces of a straight-line or a curved pipejacking. Case study was performed by applying the theoretical and empirical formulae. After calibration, the corrected formula is more accurate and more applicable.
文摘In Japan when urban infrastructures need to be constructed, the difficulty of utilizing the ground or shallow strata will lead to a more frequent use of the deep strata. The common construction methods are open-cut, pipe jacking, and shield methods. In recent years, a new pipe jacking method has been established that can be adapted to 20 m below the ground or more. Using this method, the drivage machine and the jacking pipe continue to move an underground until the completion of the driving. Therefore an over-cutting area (so-called tail-void) must be formed to lower the friction between the ground and the pipe. The tail-void is filled with lubrications. However, because the stress release from the ground continues to advance when the tail-void is formed, hence there are some challenges required to cope with the stability of the surrounding ground. In order to utilize the pipe jacking method in the deeper strata layers, the theory, analysis and installation of tail-void have to be systemized, and such systematic data must be stored. Therefore, the conditions of tail-void in the deep pipe jacking method are discussed using numerical analyses.