期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Seismic ground amplification induced by box-shaped tunnels 被引量:2
1
作者 Damoon Feizi Jafar Asgari Marnani +1 位作者 Hamid Alielahi Mehdi Panji 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第3期697-714,共18页
The growing use of underground structures,specifically to facilitate urban transportation,highlights the need to scrutinize the effects of such spaces on the seismic ground response as well as the surrounding building... The growing use of underground structures,specifically to facilitate urban transportation,highlights the need to scrutinize the effects of such spaces on the seismic ground response as well as the surrounding buildings.In this regard,the seismic ground amplification variations in the vicinity of single and twin box-shaped tunnels subjected to SV waves have been investigated by the finite difference method.To evaluate the effects,generalizable dimensionless diagrams based on the results of parametric numerical analysis considering factors such as variations in the tunnels′depth,the distances between the tunnels,tunnel lining flexibility,and input wave frequency,have been presented.In addition,to assess the effects of underground box-shaped tunnels on the response spectrum of the ground surface,seven selected accelerograms have been matched based on a specific design spectrum for the stiff soil condition of Eurocode 8(CEN,2006).The results underline the significant amplification effect of the box-shaped tunnels on the ground motions,specifically in the case of horizontal twin tunnels,which should be given more attention in current seismic design practices for surface structures. 展开更多
关键词 seismic amplification box-shaped tunnels response spectra numerical method parametric studies buried depth
下载PDF
Tunnel flexibility effect on the ground surface acceleration response 被引量:8
2
作者 Mohammad Hassan Baziar asoud Rabeti Moghadam +1 位作者 Yun Wook Choo Dong-Soo Kim 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第3期457-476,共20页
Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility... Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility effect of a box-shaped subway tunnel, resting directly on bedrock, on the ground surface acceleration response using a numerical model verified against dynamic centrifuge test results. A comparison of the ground surface acceleration response for tunnel models with different flexibility ratios revealed that the tunnels with different flexibility ratios influence the acceleration response at the ground surface in different ways. Tunnels with lower flexibility ratios have higher acceleration responses at short periods, whereas tunnels with higher flexibility ratios have higher acceleration responses at longer periods. The effect of the flexibility ratio on ground surface acceleration is more prominent in the high range of frequencies. Furthermore, as the flexibility ratio of the tunnel system increases, the acceleration response moves away from the free field response and shifts towards the longer periods. Therefore, the flexibility ratio of the underground tunnels influences the peak ground acceleration (PGA) at the ground surface, and may need to be considered in the seismic zonation of urban areas. 展开更多
关键词 box-shaped tunnel flexibility ratio acceleration response ground surface centrifuge modeling numericalsimulation
下载PDF
Seismic performance of eccentrically-compressed steel pier under multi-directional earthquake loads 被引量:1
3
作者 Luo Wenwei Li Haifeng Cao Bao′an 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2021年第3期771-789,共19页
In this article,the seismic performance of box-shaped steel piers embedded with energy-dissipating shells under a multi-directional seismic load is investigated.A finite element(FE)model was accurately established and... In this article,the seismic performance of box-shaped steel piers embedded with energy-dissipating shells under a multi-directional seismic load is investigated.A finite element(FE)model was accurately established and verified by the quasi-static test results.A parametric analysis of the hysteretic behaviour of a novel box-shaped steel pier under eccentric pressure was carried out on this basis.We discussed the influence of the eccentricity,axial compression ratio,thickness of embedded shell,ratio of slenderness,spacing of transverse stiffening ribs on the embedded shell,and width-to-thickness ratio of wallboard on the anti-seismic performance of a novel box-shaped steel bridge pier.The results revealed that the load carrying capacity and ductility coefficient of the specimen are substantially influenced by the eccentricity,variation in the axial compression ratio,and slenderness ratio.The specimen′s plastic energy dissipation capacity can be effectively improved by increasing the thickness of the embedded shell.The spacing of the transverse stiffening ribs only marginally affects seismic performance.In addition,the width-to-thickness ratio of the wallboard exerts a more considerable influence on the deformability of the square-section specimen.Finally,a formula for calculating the bearing capacity of the novel box-shaped steel piers under cyclic loading is proposed. 展开更多
关键词 multi-directional seismic action eccentric compression box-shaped steel pier seismic performance finite element analysis
下载PDF
Cenozoic structural deformation in the Yuqia-Jiulongshan region, northern Qaidam Basin, China 被引量:1
4
作者 CHEN Siyuan ZHANG Yongshu +4 位作者 WU Lei ZHANG Junyong WANG Liqun XIAO Ancheng SHEN Ya 《Petroleum Exploration and Development》 2020年第1期114-123,共10页
Based on field geological survey, interpretation of seismic reflection profile and thermochronology dating, this paper systematically studied the structural deformation of the Yuqia-Jiulongshan region in northern Qaid... Based on field geological survey, interpretation of seismic reflection profile and thermochronology dating, this paper systematically studied the structural deformation of the Yuqia-Jiulongshan region in northern Qaidam Basin during the Cenozoic. The results show that the area is primarily dominated by a large box-shaped anticline, with steep limbs and a wide and gently-deformed core. The Mahaigaxiu and Jiulongshan anticlines are secondary folds controlled by secondary faults in the limbs of the box-shaped anticline. Whereas the Yuqia and the Northern Yuqia anticlines are secondary folds within the wide core of the box-shaped anticline. The geometry of the box-shaped anticline is mainly controlled by some high-angle reverse faults with certain right-lateral strike-slip components, displaying distinct positive flower structures in section view. Combining the sedimentary correlation and detrital apatite fission track analysis, we believe that the Yuqia-Jiulongshan region was a paleo-uplift that developed slightly in the early Cenozoic, resulting in the relatively thin Cenozoic strata. The intense deformation that shaped the present-day structural framework occurred in or after the sedimentary period of Shizigou Formation. The Yuqia – Jiulongshan paleo-uplift is adjacent to the Sainan depression that is rich in Lower-Middle Jurassic source rocks, and thus has high potential for future hydrocarbon exploration. 展开更多
关键词 Qaidam BASIN Yuqia-Jiulongshan REGION CENOZOIC structural deformation box-shaped ANTICLINE PALEO-UPLIFT
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部