The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF mak...The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF makes it possible to design and produce complex conformal cooling channel systems in molds.Thus,LPBF-processed tool steels have attracted more and more attention.The complex thermal history in the LPBF process makes the microstructural characteristics and properties different from those of conventional manufactured tool steels.This paper provides an overview of LPBF-processed tool steels by describing the physical phenomena,the microstructural characteristics,and the mechanical/thermal properties,including tensile properties,wear resistance,and thermal properties.The microstructural characteristics are presented through a multiscale perspective,ranging from densification,meso-structure,microstructure,substructure in grains,to nanoprecipitates.Finally,a summary of tool steels and their challenges and outlooks are introduced.展开更多
To analyze the seismic response of steel structure isolation systems under long-period seismic motion,a 9-story steel frame building was selected as the subject.Five steel structure finite element models were establis...To analyze the seismic response of steel structure isolation systems under long-period seismic motion,a 9-story steel frame building was selected as the subject.Five steel structure finite element models were established using SAP2000.Response spectrum analysis was conducted on the seismic motion to determine if it adhered to the characteristics of long-period seismic motion.Modal analysis of each structural model revealed that the isolation structure significantly prolonged the structural natural vibration period and enhanced seismic performance.Base reactions and floor displacements of various structures notably increased under long-period seismic motion compared to regular seismic activity.Placing isolation bearings in the lower part of the structure proved more effective under long-period seismic motion.In seismic design engineering,it is essential to consider the impact of long-period seismic motion on structures and the potential failure of isolation bearings.展开更多
Shear-type structures are common structural forms in industrial and civil buildings,such as concrete and steel frame structures.Fault diagnosis of shear-type structures is an important topic to ensure the normal use o...Shear-type structures are common structural forms in industrial and civil buildings,such as concrete and steel frame structures.Fault diagnosis of shear-type structures is an important topic to ensure the normal use of structures.The main drawback of existing damage assessment methods is that they require accurate structural finite element models for damage assessment.However,for many shear-type structures,it is difficult to obtain accurate FEM.In order to avoid finite elementmodeling,amodel-freemethod for diagnosing shear structure defects is developed in this paper.This method only needs to measure a few low-order vibration modes of the structure.The proposed defect diagnosis method is divided into two stages.In the first stage,the location of defects in the structure is determined based on the difference between the virtual displacements derived from the dynamic flexibility matrices before and after damage.In the second stage,damage severity is evaluated based on an improved frequency sensitivity equation.Themain innovations of this method lie in two aspects.The first innovation is the development of a virtual displacement difference method for determining the location of damage in the shear structure.The second is to improve the existing frequency sensitivity equation to calculate the damage degree without constructing the finite elementmodel.Thismethod has been verified on a numerical example of a 22-story shear frame structure and an experimental example of a three-story steel shear structure.Based on numerical analysis and experimental data validation,it is shown that this method only needs to use the low-order modes of structural vibration to diagnose the defect location and damage degree,and does not require finite element modeling.The proposed method should be a very simple and practical defect diagnosis technique in engineering practice.展开更多
A kind of micro/nanostructured 2205 duplex stainless steel(DSS)with uniform distribution of nanocrystals was prepared via aluminothermic reaction method.The analysis of stress-strain curve showed that the fracture str...A kind of micro/nanostructured 2205 duplex stainless steel(DSS)with uniform distribution of nanocrystals was prepared via aluminothermic reaction method.The analysis of stress-strain curve showed that the fracture strength and elongation of the specimen were 946 MPa and 24.7%,respectively.At present,the research on microstructure of bimodal 2205 DSS at room temperature(RT)mainly depended on scanning electron microscope(SEM)observation after loading experiments.The test result indicates that there are two different yield stages in stress-strain curve of specimen during tensile process.The microstructure of duplex bimodal structured stainless steel consists of two pairs of soft hard regions and phases.By studying deformation mechanism of bimodal structured stainless steel,the interaction between soft phase and hard phase are discussed.The principle of composition design and microstructure control of typical duplex stainless steel is obtained,which provides an important research basis for designing of advanced duplex stainless steel.展开更多
Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction indu...Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction industry.However,the construction of high-rise steel frame structures requires advanced technology.If the construction technology is effectively implemented and the welding techniques of the construction personnel align with the requirements for high-rise steel frame structures,it can help mitigate deformations in the steel structure,thus preserving the overall construction quality of high-rise steel frame structures.To enhance the applicability of steel frame structures in high-rise buildings,this paper focuses on analyzing the optimization path for the construction process of high-rise steel frame structures.It introduces a tailored approach to control welding-induced deformations in steel frame structures,aiming to make a valuable contribution to the advancement of China’s construction industry.展开更多
The problem of noise has always been highlighted in assembled steel structure houses.Therefore,it is necessary to use effective soundproof measures where steel beams intersect with the reserved line pipe openings,door...The problem of noise has always been highlighted in assembled steel structure houses.Therefore,it is necessary to use effective soundproof measures where steel beams intersect with the reserved line pipe openings,doors,windows,elevator shafts,and other locations.In this paper,we will investigate the areas with subpar soundproof performance in an assembled steel structure residential project and propose suitable noise control measures to address this issue.展开更多
This paper discusses the coloration process on the stainless steel and the properties of the film. The compositions, morphology and structure of colored films on stainless steel are studied by using SEM,AES,AFM,STM. ...This paper discusses the coloration process on the stainless steel and the properties of the film. The compositions, morphology and structure of colored films on stainless steel are studied by using SEM,AES,AFM,STM. The diffusion controlled mechanisms of films and calculation formula of surface electropotential difference are discussed.展开更多
Input ground motions have significant impacts on the uncertainty of structural responses in time-history analysis.In this study,records were selected and scaled for the evaluation of mean structural responses accordin...Input ground motions have significant impacts on the uncertainty of structural responses in time-history analysis.In this study,records were selected and scaled for the evaluation of mean structural responses according to the target spectrum.The Newmark-Hall spectrum is closely related to seismic response of short,medium and long-period structures,so it was taken as the target spectrum here.The nonlinear time-history analyses of 9-story and 20-story steel moment-resisting frame structures were carried out as examples.They represent medium and long-period buildings,respectively.Three target spectra with risk of 50%,10%and 2%probabilities for exceedance in 50 years were calculated by the average Newmark-Hall spectrum method for three ground motion sets developed in the SAC Steel Project.The predicted structural mean responses of these Newmark-Hall spectra were compared with those calculated by the average spectral acceleration method for the same record set.It is found that both methods have similar accuracy for estimating the structural mean response.However,the method proposed herein is more effective in reducing the variability of the structural responses.Also,the proposed method is more advantageous for the time-history analysis of long-period structures or structures with more severe nonlinear responses under strong seismic excitations.展开更多
Electron microscopic investigation on low carbon steel strips produced by the CSP process has been carried out. Large number of oxide dispersive precipitates have been observed in the ferrite matrix of the steel strip...Electron microscopic investigation on low carbon steel strips produced by the CSP process has been carried out. Large number of oxide dispersive precipitates have been observed in the ferrite matrix of the steel strips. Dimension of them is about 10~20 nm. Electron diffraction study showed that the structure of these precipitates consists with cubic system spinel structure. Their lattice parameter is about 0.83 nm. The results implied that they should be complex oxides of Fe, Al et al. Small sulfide particles with 100-300 nm in size have also been observed. Remarkable strengthening and grain refinement effects can be obtained by the precipitations. The oxygen and sulfur in steels could play beneficial role under certain conditions.展开更多
Paint removal from steel structure is executed for shipyards of marine and offshore engineering.Due to environmental unfriendliness and unhealthy drawbacks of sand blasting technique, laser ablation technique is propo...Paint removal from steel structure is executed for shipyards of marine and offshore engineering.Due to environmental unfriendliness and unhealthy drawbacks of sand blasting technique, laser ablation technique is proposed as a substituting method.By absorbing high energy of the 1064 nm pulsed laser, the paint is vaporized quickly.The ablated debris is then collected by using a suction pump.Initial metal surface of the steel is exposed when laser beam irradiates perpendicularly and scans over it.The cleaned surface fulfills the requirements of surface preparation standards ISO 8501 of SA2.The adhesion is further characterized with pull-off test after carrying out painting with Jotamastic 87 aluminum paint.The repainting can be embedded onto the laser cleaned surface to bond much more tightly.The excellent adhesion strength of 20 MPa between repainted coating and the substrate is achieved, which is higher than what is required by shipyards applications.展开更多
In order to improve the strength and toughness of Q690 E steel sheets,the effect of rare earth element Ce on the strength and toughness of Q690 E steel was studied by means of transmission electron microscopy,scanning...In order to improve the strength and toughness of Q690 E steel sheets,the effect of rare earth element Ce on the strength and toughness of Q690 E steel was studied by means of transmission electron microscopy,scanning electron microscopy,and metallographic microscope.The results showed that the addition of Ce in steel limited the combination of S with Mn and Ca,transformed Al2O3 inclusion into spherical CeAlO3 inclusion,and modified the precipitate form of some composite inclusions of TiN and sulfide oxides into TiN precipitation alone.The inclusions were spheroidizing.The size of inclusions was decreased from 3–5μm to 1–2μm,and the distribution was dispersed.Ce played a role in purifying molten steel through desulphurization and deoxidization.Meanwhile,the addition of Ce in steel effectively increased the nucleation particles in the liquid phase,improved the nucleation rate,enlarged the equiaxed grain refinement area,and limited the development of columnar crystals.The average grain size of slab decreased from 45.76 to 35.25μm,and the proportion of large grain size(>50μm)decreased from 40.41%to 23.74%.The macrostructural examination of slab was improved from B0.5 to C2.0,which realized the refinement of the solidified structure and reduced the banded structure of hot rolled plate.In addition,due to the inheritance of refined structure in the upstream,the recrystallization of deformed austenite and the growth of grain after recrystallization were restrained,and a refined tempered sorbite structure was obtained.When rare earth element Ce was added,the width of the martensite lath bundle was narrowed from about 500 nm to about 200 nm,which realized a remarkable grain refinement strengthening and toughening effect.Mechanical properties such as tensile,yield,and low-temperature impact toughness were significantly improved.展开更多
Severe damage to steel space structures is rarely reported when compared to other structural systems damaged during past major earthquakes around the world. Two gymnasiums of steel space structures in downtown Lushan ...Severe damage to steel space structures is rarely reported when compared to other structural systems damaged during past major earthquakes around the world. Two gymnasiums of steel space structures in downtown Lushan County that were damaged during the 2013 M7.0 Lushan earthquake in China were investigated and the observations are summarized in this paper. Typical damage to these two steel space structures ranges from moderate to severe. Moderate damage includes global buckling and dislocation of bolted connections of truss members, and inelastic elongation of anchor bolts and sliding of pedestal plates of supports. Severe damage includes member fracture caused by local buckling, and fracture failure of anchor bolts and welds. The distribution of structural damage to these two structures is described in detail and future research opportunities are suggested.展开更多
To understand the solidification behavior of austenitic stainless steel in pulsed magnetic field, the solidification process is investigated by means of the self-made high voltage pulse power source and the solidifica...To understand the solidification behavior of austenitic stainless steel in pulsed magnetic field, the solidification process is investigated by means of the self-made high voltage pulse power source and the solidification tester. The results show that the solidification structure of austenitic stainless steel can be remarkably refined in pulsed magnetic field, yet the grains become coarse again when the magnetic intensity is exceedingly large, indicating that an optimal intensity range existed for structure refinement. The solidification temperature can be enhanced with an increase in the magnetic intensity. The solidification time is shortened obviously, but the shortening degree is reduced with the increase of the magnetic intensity.展开更多
In the present paper, low carbon steel strips with different phosphorus contents were produced using a twin roll strip casting process. The solidification structure was studied and its features were analyzed in detail...In the present paper, low carbon steel strips with different phosphorus contents were produced using a twin roll strip casting process. The solidification structure was studied and its features were analyzed in detail. It was found that the strips possessed a fine microstructure compared with the mould cast steels. With increasing phosphorus content more ferrite has been formed with finer grains.展开更多
Steel structure system of crane deteriorates over time due to environmental effects, material fatigue, and overloading. System structural reliability and remaining service life assessment methods are developed during ...Steel structure system of crane deteriorates over time due to environmental effects, material fatigue, and overloading. System structural reliability and remaining service life assessment methods are developed during the few decades. But until now estimating remaining service life methods of crane steel system by reliability theory begin to develop. Safety assessment of existing steel structure system requires the development of a methodology that allows for an accurate evaluation of reliability and prediction of the remaining life. Steel structures are the supporting elements in the special equipment such as hoisting machinery. Structure reliability and remaining service life safe assessment are important for steel structures. For finding the reason which caused the failure modes (such as fatigue strength failure, stiffness failure and stability failure), incremental loading method based on possibilistic reliability is applied into dynamic structure failure path research. Through reliability analyzing and calculating for crane, it is demonstrated that fatigue damage is the most common failure mode. Fuzzy fatigue damage accumulation theory is used for basis theory and Paris-Eadogan equations are used for mathematical modeling. All fatigue parameter values of the welding box girder of bridge cranes are determined and fatigue remaining life formulas are deduced. After field test and collecting working parameters of numerous cranes, typical fatigue load spectrum was compiled for the dangerous point of box girders used in the area. Fatigue remaining life is assessed for different types and lifting capacities. Safety for steel structure system of bridge crane is assessed by two quantitative indexs: reliability and remaining life. Therefore, the evaluation means is more comprehensive and reasonable. The example shows that the two quantitative indexs are mutually correlated. Through analyzing the 120 t-22.5 m bridge crane of a certain enterprise, a new methodology to estimate remaining service life of steel structure by possibilistic reliability theory is introduced for safety evaluation of structure system.展开更多
Achieving a uniform structure with few defects in heavy steel ingot is of high commercial importance. In this present work, in order to verify the potential of pulsed magneto-oscillation(PMO) applied in the production...Achieving a uniform structure with few defects in heavy steel ingot is of high commercial importance. In this present work, in order to verify the potential of pulsed magneto-oscillation(PMO) applied in the production of heavy ingot, an induction coil was located at the hot top of the steel ingot to develop a novel technique, named hot top pulsed magneto oscillation(HPMO). The influences of HPMO on the solidification structure, macro segregation and compactness of a cylindrical medium carbon steel ingot with the weight of 160 kg were systematically investigated by optical microscope(OM) and laser induced breakdown spectroscopy original position metal analyzer(LIBSOPA-100). The results show that HPMO not only causes significant grain refinement and promotes the occurrence of columnar to equiaxed transition(CET) but also can homogenize the carbon distribution and enhance the compactness of the steel ingot. Therefore, HPMO technique has the potential to be applied in the production of heavy steel ingots on an industrial scale.展开更多
The seismic behavior of a school gymnasium, whose steel grid roof was heavily damaged during the Mw6.6 Lushan earthquake in 2013, is simulated through nonlinear dynamic analysis. The simulated damage is compared with ...The seismic behavior of a school gymnasium, whose steel grid roof was heavily damaged during the Mw6.6 Lushan earthquake in 2013, is simulated through nonlinear dynamic analysis. The simulated damage is compared with field observations to validate the numerical model, based on which a parametric study was performed to provide insight into the failure process and damage patterns of steel grids. The results suggest that the grid damage is strongly related to roofsubstructure interactions. These include not only the substructure's amplification of the vibration, but the uncoordinated displacement of the substructure's columns which support the grid also play an equally important role. In particular, the latter effect may significantly alter the internal force distribution in the steel grid and lead to unexpected buckling of members that are proportioned as tension-only members. While such interactions are generally not accounted for in the design practice for grid structures in China, similar seismic damage may be expected for other existing grid roofs in future earthquakes. As is also demonstrated in this study, seismic isolation of the roof is a promising solution to protect grid roof structures by mitigating the detrimental effects of roof-substructure interactions.展开更多
Mercury intrusion porosimetry was used to measure the pore structure of steel fiber reinforced polymer-cement-based composite. The results indicate that the large pore volume decreases by 57. 8% - 51.2% and by 87. 1% ...Mercury intrusion porosimetry was used to measure the pore structure of steel fiber reinforced polymer-cement-based composite. The results indicate that the large pore volume decreases by 57. 8% - 51.2% and by 87. 1% - 88% with the addition of steel fibers and polymers respectively. When both steel fibers and polymers are simultaneously added, the large pore volume decreases by 88.3% - 90.1% . As a surface active material , polymer has a favorable water-reduced and forming-film effect, which is contributed to the decrease of the thickness of water film and the improvement of the conglutination between the fibers and the matrix. Polymers could form a microstructure network. This network structure and the bone structure of cement hydration products penetrate each other and thus the interpenetrating network with sticky aggregate and steel fiber inside forms.展开更多
基金financial supports provided by the China Scholarship Council(Nos.202206 290061 and 202206290062)。
文摘The laser powder bed fusion(LPBF) process can integrally form geometrically complex and high-performance metallic parts that have attracted much interest,especially in the molds industry.The appearance of the LPBF makes it possible to design and produce complex conformal cooling channel systems in molds.Thus,LPBF-processed tool steels have attracted more and more attention.The complex thermal history in the LPBF process makes the microstructural characteristics and properties different from those of conventional manufactured tool steels.This paper provides an overview of LPBF-processed tool steels by describing the physical phenomena,the microstructural characteristics,and the mechanical/thermal properties,including tensile properties,wear resistance,and thermal properties.The microstructural characteristics are presented through a multiscale perspective,ranging from densification,meso-structure,microstructure,substructure in grains,to nanoprecipitates.Finally,a summary of tool steels and their challenges and outlooks are introduced.
基金Anhui Province Young and Middle-aged Teacher Training Action Excellent Young Teacher Cultivation Project(YQYB2023162)Anhui University Natural Science Research Key Project(KJ2021A1410)Special Topic of the Higher Education Institution Scientific Research Development Center of the Ministry of Education(ZJXF2022080)。
文摘To analyze the seismic response of steel structure isolation systems under long-period seismic motion,a 9-story steel frame building was selected as the subject.Five steel structure finite element models were established using SAP2000.Response spectrum analysis was conducted on the seismic motion to determine if it adhered to the characteristics of long-period seismic motion.Modal analysis of each structural model revealed that the isolation structure significantly prolonged the structural natural vibration period and enhanced seismic performance.Base reactions and floor displacements of various structures notably increased under long-period seismic motion compared to regular seismic activity.Placing isolation bearings in the lower part of the structure proved more effective under long-period seismic motion.In seismic design engineering,it is essential to consider the impact of long-period seismic motion on structures and the potential failure of isolation bearings.
基金the Zhejiang Public Welfare Technology Application Research Project(LGF22E080021)Ningbo Natural Science Foundation Project(202003N4169)+2 种基金Natural Science Foundation of China(11202138,52008215)the Natural Science Foundation of Zhejiang Province,China(LQ20E080013)the Major Special Science and Technology Project(2019B10076)of“Ningbo Science and Technology Innovation 2025”.
文摘Shear-type structures are common structural forms in industrial and civil buildings,such as concrete and steel frame structures.Fault diagnosis of shear-type structures is an important topic to ensure the normal use of structures.The main drawback of existing damage assessment methods is that they require accurate structural finite element models for damage assessment.However,for many shear-type structures,it is difficult to obtain accurate FEM.In order to avoid finite elementmodeling,amodel-freemethod for diagnosing shear structure defects is developed in this paper.This method only needs to measure a few low-order vibration modes of the structure.The proposed defect diagnosis method is divided into two stages.In the first stage,the location of defects in the structure is determined based on the difference between the virtual displacements derived from the dynamic flexibility matrices before and after damage.In the second stage,damage severity is evaluated based on an improved frequency sensitivity equation.Themain innovations of this method lie in two aspects.The first innovation is the development of a virtual displacement difference method for determining the location of damage in the shear structure.The second is to improve the existing frequency sensitivity equation to calculate the damage degree without constructing the finite elementmodel.Thismethod has been verified on a numerical example of a 22-story shear frame structure and an experimental example of a three-story steel shear structure.Based on numerical analysis and experimental data validation,it is shown that this method only needs to use the low-order modes of structural vibration to diagnose the defect location and damage degree,and does not require finite element modeling.The proposed method should be a very simple and practical defect diagnosis technique in engineering practice.
基金Funded by the National Natural Science Foundation of China(No.51911530119)the Department of Education of Gansu Province Innovation Fund(No.2021A-023)the Open Fund Project of Key Laboratory of Solar Power System Engineering Project(No.2022SPKL01)。
文摘A kind of micro/nanostructured 2205 duplex stainless steel(DSS)with uniform distribution of nanocrystals was prepared via aluminothermic reaction method.The analysis of stress-strain curve showed that the fracture strength and elongation of the specimen were 946 MPa and 24.7%,respectively.At present,the research on microstructure of bimodal 2205 DSS at room temperature(RT)mainly depended on scanning electron microscope(SEM)observation after loading experiments.The test result indicates that there are two different yield stages in stress-strain curve of specimen during tensile process.The microstructure of duplex bimodal structured stainless steel consists of two pairs of soft hard regions and phases.By studying deformation mechanism of bimodal structured stainless steel,the interaction between soft phase and hard phase are discussed.The principle of composition design and microstructure control of typical duplex stainless steel is obtained,which provides an important research basis for designing of advanced duplex stainless steel.
文摘Because of urbanization,land resources in China’s cities has become increasingly scarce.Therefore,modern buildings are becoming taller,making high-rise steel frame structures the new favorite of the construction industry.However,the construction of high-rise steel frame structures requires advanced technology.If the construction technology is effectively implemented and the welding techniques of the construction personnel align with the requirements for high-rise steel frame structures,it can help mitigate deformations in the steel structure,thus preserving the overall construction quality of high-rise steel frame structures.To enhance the applicability of steel frame structures in high-rise buildings,this paper focuses on analyzing the optimization path for the construction process of high-rise steel frame structures.It introduces a tailored approach to control welding-induced deformations in steel frame structures,aiming to make a valuable contribution to the advancement of China’s construction industry.
文摘The problem of noise has always been highlighted in assembled steel structure houses.Therefore,it is necessary to use effective soundproof measures where steel beams intersect with the reserved line pipe openings,doors,windows,elevator shafts,and other locations.In this paper,we will investigate the areas with subpar soundproof performance in an assembled steel structure residential project and propose suitable noise control measures to address this issue.
文摘This paper discusses the coloration process on the stainless steel and the properties of the film. The compositions, morphology and structure of colored films on stainless steel are studied by using SEM,AES,AFM,STM. The diffusion controlled mechanisms of films and calculation formula of surface electropotential difference are discussed.
基金National Natural Science Foundation of Hebei Province under Grant No.E2020202038the National Natural Science Foundation of China under Grant No.51778206。
文摘Input ground motions have significant impacts on the uncertainty of structural responses in time-history analysis.In this study,records were selected and scaled for the evaluation of mean structural responses according to the target spectrum.The Newmark-Hall spectrum is closely related to seismic response of short,medium and long-period structures,so it was taken as the target spectrum here.The nonlinear time-history analyses of 9-story and 20-story steel moment-resisting frame structures were carried out as examples.They represent medium and long-period buildings,respectively.Three target spectra with risk of 50%,10%and 2%probabilities for exceedance in 50 years were calculated by the average Newmark-Hall spectrum method for three ground motion sets developed in the SAC Steel Project.The predicted structural mean responses of these Newmark-Hall spectra were compared with those calculated by the average spectral acceleration method for the same record set.It is found that both methods have similar accuracy for estimating the structural mean response.However,the method proposed herein is more effective in reducing the variability of the structural responses.Also,the proposed method is more advantageous for the time-history analysis of long-period structures or structures with more severe nonlinear responses under strong seismic excitations.
文摘Electron microscopic investigation on low carbon steel strips produced by the CSP process has been carried out. Large number of oxide dispersive precipitates have been observed in the ferrite matrix of the steel strips. Dimension of them is about 10~20 nm. Electron diffraction study showed that the structure of these precipitates consists with cubic system spinel structure. Their lattice parameter is about 0.83 nm. The results implied that they should be complex oxides of Fe, Al et al. Small sulfide particles with 100-300 nm in size have also been observed. Remarkable strengthening and grain refinement effects can be obtained by the precipitations. The oxygen and sulfur in steels could play beneficial role under certain conditions.
基金supported by the National Natural Science Foundation of China (U1609209)National Natural Science Foundation of China (61605162)+2 种基金NSFC-Liaoning Province united foundation (U1608259)National Natural Science Foundation of China (51501219)the financial support from the China Scholarship Council
文摘Paint removal from steel structure is executed for shipyards of marine and offshore engineering.Due to environmental unfriendliness and unhealthy drawbacks of sand blasting technique, laser ablation technique is proposed as a substituting method.By absorbing high energy of the 1064 nm pulsed laser, the paint is vaporized quickly.The ablated debris is then collected by using a suction pump.Initial metal surface of the steel is exposed when laser beam irradiates perpendicularly and scans over it.The cleaned surface fulfills the requirements of surface preparation standards ISO 8501 of SA2.The adhesion is further characterized with pull-off test after carrying out painting with Jotamastic 87 aluminum paint.The repainting can be embedded onto the laser cleaned surface to bond much more tightly.The excellent adhesion strength of 20 MPa between repainted coating and the substrate is achieved, which is higher than what is required by shipyards applications.
基金financially supported by National Natural Science Foundation of China (No. 51774031)Open Project of State Key Laboratory of Advanced Special Steel, Shanghai University (SKLASS 2017-12)
文摘In order to improve the strength and toughness of Q690 E steel sheets,the effect of rare earth element Ce on the strength and toughness of Q690 E steel was studied by means of transmission electron microscopy,scanning electron microscopy,and metallographic microscope.The results showed that the addition of Ce in steel limited the combination of S with Mn and Ca,transformed Al2O3 inclusion into spherical CeAlO3 inclusion,and modified the precipitate form of some composite inclusions of TiN and sulfide oxides into TiN precipitation alone.The inclusions were spheroidizing.The size of inclusions was decreased from 3–5μm to 1–2μm,and the distribution was dispersed.Ce played a role in purifying molten steel through desulphurization and deoxidization.Meanwhile,the addition of Ce in steel effectively increased the nucleation particles in the liquid phase,improved the nucleation rate,enlarged the equiaxed grain refinement area,and limited the development of columnar crystals.The average grain size of slab decreased from 45.76 to 35.25μm,and the proportion of large grain size(>50μm)decreased from 40.41%to 23.74%.The macrostructural examination of slab was improved from B0.5 to C2.0,which realized the refinement of the solidified structure and reduced the banded structure of hot rolled plate.In addition,due to the inheritance of refined structure in the upstream,the recrystallization of deformed austenite and the growth of grain after recrystallization were restrained,and a refined tempered sorbite structure was obtained.When rare earth element Ce was added,the width of the martensite lath bundle was narrowed from about 500 nm to about 200 nm,which realized a remarkable grain refinement strengthening and toughening effect.Mechanical properties such as tensile,yield,and low-temperature impact toughness were significantly improved.
基金the National Science and Technology Supporting Program(2012BAK15B02)the National Natural Science Foundation Program(50938006)the special program for Science Field Investigation on Lushan M7.0 Earthquake from the China Earthquake Administration
文摘Severe damage to steel space structures is rarely reported when compared to other structural systems damaged during past major earthquakes around the world. Two gymnasiums of steel space structures in downtown Lushan County that were damaged during the 2013 M7.0 Lushan earthquake in China were investigated and the observations are summarized in this paper. Typical damage to these two steel space structures ranges from moderate to severe. Moderate damage includes global buckling and dislocation of bolted connections of truss members, and inelastic elongation of anchor bolts and sliding of pedestal plates of supports. Severe damage includes member fracture caused by local buckling, and fracture failure of anchor bolts and welds. The distribution of structural damage to these two structures is described in detail and future research opportunities are suggested.
基金Item Sponsored by National Natural Science Foundation of China (50274050) and Shanghai Baoshan Iron and Steel Group
文摘To understand the solidification behavior of austenitic stainless steel in pulsed magnetic field, the solidification process is investigated by means of the self-made high voltage pulse power source and the solidification tester. The results show that the solidification structure of austenitic stainless steel can be remarkably refined in pulsed magnetic field, yet the grains become coarse again when the magnetic intensity is exceedingly large, indicating that an optimal intensity range existed for structure refinement. The solidification temperature can be enhanced with an increase in the magnetic intensity. The solidification time is shortened obviously, but the shortening degree is reduced with the increase of the magnetic intensity.
基金This work was supported by the Major State Basic Research Development Program of China(973 Program)under the contract number of 2004CB619108the National Natural Science Foundation of China(No.50574018)the NECT-04-0278 Project of the Ministry of Education of China.
文摘In the present paper, low carbon steel strips with different phosphorus contents were produced using a twin roll strip casting process. The solidification structure was studied and its features were analyzed in detail. It was found that the strips possessed a fine microstructure compared with the mould cast steels. With increasing phosphorus content more ferrite has been formed with finer grains.
基金supported by National Scientific and Technological Support Projects during the 11th Five-Year Plan Period (Grant No. 2006BAK02B04)Shanxi Provincial Youth Science and Technology Research Fund of China (Grant No. 2006021029)+2 种基金Shanxi Provincial Natural Science Foundation of China (Grant No. 2008011043-1)Shanxi Provincial High-tech Industrialization Project of China (Grant No20090020)Doctor Fund of Taiyuan University of Science and Technology of China (Grant No. 20092005)
文摘Steel structure system of crane deteriorates over time due to environmental effects, material fatigue, and overloading. System structural reliability and remaining service life assessment methods are developed during the few decades. But until now estimating remaining service life methods of crane steel system by reliability theory begin to develop. Safety assessment of existing steel structure system requires the development of a methodology that allows for an accurate evaluation of reliability and prediction of the remaining life. Steel structures are the supporting elements in the special equipment such as hoisting machinery. Structure reliability and remaining service life safe assessment are important for steel structures. For finding the reason which caused the failure modes (such as fatigue strength failure, stiffness failure and stability failure), incremental loading method based on possibilistic reliability is applied into dynamic structure failure path research. Through reliability analyzing and calculating for crane, it is demonstrated that fatigue damage is the most common failure mode. Fuzzy fatigue damage accumulation theory is used for basis theory and Paris-Eadogan equations are used for mathematical modeling. All fatigue parameter values of the welding box girder of bridge cranes are determined and fatigue remaining life formulas are deduced. After field test and collecting working parameters of numerous cranes, typical fatigue load spectrum was compiled for the dangerous point of box girders used in the area. Fatigue remaining life is assessed for different types and lifting capacities. Safety for steel structure system of bridge crane is assessed by two quantitative indexs: reliability and remaining life. Therefore, the evaluation means is more comprehensive and reasonable. The example shows that the two quantitative indexs are mutually correlated. Through analyzing the 120 t-22.5 m bridge crane of a certain enterprise, a new methodology to estimate remaining service life of steel structure by possibilistic reliability theory is introduced for safety evaluation of structure system.
基金financially supported by the National Natural Science Foundation of China(Granted No.U1760204,51504048)the National Key Research Program of China(Granted No.2017YFB0701800)
文摘Achieving a uniform structure with few defects in heavy steel ingot is of high commercial importance. In this present work, in order to verify the potential of pulsed magneto-oscillation(PMO) applied in the production of heavy ingot, an induction coil was located at the hot top of the steel ingot to develop a novel technique, named hot top pulsed magneto oscillation(HPMO). The influences of HPMO on the solidification structure, macro segregation and compactness of a cylindrical medium carbon steel ingot with the weight of 160 kg were systematically investigated by optical microscope(OM) and laser induced breakdown spectroscopy original position metal analyzer(LIBSOPA-100). The results show that HPMO not only causes significant grain refinement and promotes the occurrence of columnar to equiaxed transition(CET) but also can homogenize the carbon distribution and enhance the compactness of the steel ingot. Therefore, HPMO technique has the potential to be applied in the production of heavy steel ingots on an industrial scale.
基金National Science & Technology Support Program during the Twelfth Five-year Plan Period of China under Grant No.2015BAK17B02,2015BAK17B03the Scientific Research Fund of Institute of Engineering Mechanics,CEA under Grant No.2014A01+2 种基金the Program for Innovative Research Team in China Earthquake Administrationthe International Science & Technology Cooperation Program of China under Grant No.2014DFA70950a general program of National Natural Science Foundation of China under Grant No.51578515
文摘The seismic behavior of a school gymnasium, whose steel grid roof was heavily damaged during the Mw6.6 Lushan earthquake in 2013, is simulated through nonlinear dynamic analysis. The simulated damage is compared with field observations to validate the numerical model, based on which a parametric study was performed to provide insight into the failure process and damage patterns of steel grids. The results suggest that the grid damage is strongly related to roofsubstructure interactions. These include not only the substructure's amplification of the vibration, but the uncoordinated displacement of the substructure's columns which support the grid also play an equally important role. In particular, the latter effect may significantly alter the internal force distribution in the steel grid and lead to unexpected buckling of members that are proportioned as tension-only members. While such interactions are generally not accounted for in the design practice for grid structures in China, similar seismic damage may be expected for other existing grid roofs in future earthquakes. As is also demonstrated in this study, seismic isolation of the roof is a promising solution to protect grid roof structures by mitigating the detrimental effects of roof-substructure interactions.
文摘Mercury intrusion porosimetry was used to measure the pore structure of steel fiber reinforced polymer-cement-based composite. The results indicate that the large pore volume decreases by 57. 8% - 51.2% and by 87. 1% - 88% with the addition of steel fibers and polymers respectively. When both steel fibers and polymers are simultaneously added, the large pore volume decreases by 88.3% - 90.1% . As a surface active material , polymer has a favorable water-reduced and forming-film effect, which is contributed to the decrease of the thickness of water film and the improvement of the conglutination between the fibers and the matrix. Polymers could form a microstructure network. This network structure and the bone structure of cement hydration products penetrate each other and thus the interpenetrating network with sticky aggregate and steel fiber inside forms.