Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely u...Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.展开更多
Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network lev...Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.展开更多
Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby c...Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby contributing to the advancement of camouflage evaluation.In this study,images with various camouflage effects were presented to observers to generate electroencephalography(EEG)signals,which were then used to construct a brain functional network.The topological parameters of the network were subsequently extracted and input into a machine learning model for training.The results indicate that most of the classifiers achieved accuracy rates exceeding 70%.Specifically,the Logistic algorithm achieved an accuracy of 81.67%.Therefore,it is possible to predict target camouflage effectiveness with high accuracy without the need to calculate discovery probability.The proposed method fully considers the aspects of human visual and cognitive processes,overcomes the subjectivity of human interpretation,and achieves stable and reliable accuracy.展开更多
Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture t...Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture therapy. Methods: Twenty-two PSCI patients who underwent acupuncture therapy in our hospital were enrolled as research subjects. Another 14 people matched for age, sex, and education level were included in the normal control (HC) group. All the subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans;the PSCI patients underwent one scan before acupuncture therapy and another after. The network metric difference between PSCI patients and HCs was analyzed via the independent-sample t test, whereas the paired-sample t test was employed to analyze the network metric changes in PSCI patients before vs. after treatment. Results: Small-world network attributes were observed in both groups for sparsities between 0.1 and 0.28. Compared with the HC group, the PSCI group presented significantly lower values for the global topological properties (γ, Cp, and Eloc) of the brain;significantly greater values for the nodal attributes of betweenness centrality in the CUN. L and the HES. R, degree centrality in the SFGdor. L, PCG. L, IPL. L, and HES. R, and nodal local efficiency in the ORBsup. R, ORBsupmed. R, DCG. L, SMG. R, and TPOsup. L;and decreased degree centrality in the MFG. R, IFGoperc. R, and SOG. R. After treatment, PSCI patients presented increased degree centrality in the LING.L, LING.R, and IOG. L and nodal local efficiency in PHG. L, IOG. R, FFG. L, and the HES. L, and decreased betweenness centrality in the PCG. L and CUN. L, degree centrality in the ORBsupmed. R, and nodal local efficiency in ANG. R. Conclusion: Cognitive decline in PSCI patients may be related to BFN disorders;acupuncture therapy may modulate the topological properties of the BFNs of PSCI patients.展开更多
Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0...Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.展开更多
BACKGROUND Understanding the impact of early sensory deficits on brain development is essential for understanding developmental processes and developing potential interventions.While previous studies have looked into ...BACKGROUND Understanding the impact of early sensory deficits on brain development is essential for understanding developmental processes and developing potential interventions.While previous studies have looked into the impact of prenatal experiences on language development,there is a lack of research on how these experiences affect early language and brain function development in individuals with sensorineural hearing loss(SNHL).AIM To investigate SNHL effects on early brain development and connectivity in 4-month-olds vs healthy newborns and controls.METHODS The research involved analyzing the functional brain networks of 65 infants,categorized into three groups:28 healthy newborns,224-month-old participants with SNHL,and 15 age-matched healthy participants.The resting-state functional connectivity was measured and compared between the groups using functional near-infrared spectroscopy and graph theory to assess the brain network properties.RESULTS Significant differences were found in resting-state functional connectivity between participants with SNHL and age-matched controls,indicating a developmental lag in brain connectivity for those with SNHL.Surprisingly,SNHL participants showed better connectivity development compared to healthy newborns,with connectivity strengths of 0.13±0.04 for SNHL,0.16±0.08 for controls,and 0.098±0.04 for newborns.Graph theory analysis revealed enhanced global brain network properties for the SNHL group,suggesting higher communication efficiency at 4 months.No significant differences were noted in network properties between 4-month-old SNHL participants and neonates.A unique pattern of central hubs was observed in the SNHL group,with 2 hubs in the left hemisphere compared to 6 in controls.CONCLUSION 4-month-old infants with SNHL have a distinct brain network pattern with efficient long-distance information transmission but less effective local communication compared to age-matched controls.展开更多
Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the di...Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the disease may affect some local connectivity in the brain functional network.That is,there are functional abnormalities in the sub-network.Therefore,it is crucial to accurately identify them in pathological diagnosis.To solve these problems,we proposed a sub-network extraction method based on graph regularization nonnegative matrix factorization(GNMF).The dynamic functional networks of normal subjects and early mild cognitive impairment(eMCI)subjects were vectorized and the functional connection vectors(FCV)were assembled to aggregation matrices.Then GNMF was applied to factorize the aggregation matrix to get the base matrix,in which the column vectors were restored to a common sub-network and a distinctive sub-network,and visualization and statistical analysis were conducted on the two sub-networks,respectively.Experimental results demonstrated that,compared with other matrix factorization methods,the proposed method can more obviously reflect the similarity between the common subnetwork of eMCI subjects and normal subjects,as well as the difference between the distinctive sub-network of eMCI subjects and normal subjects,Therefore,the high-dimensional features in brain functional networks can be best represented locally in the lowdimensional space,which provides a new idea for studying brain functional connectomes.展开更多
Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson...Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.展开更多
Background:Excessive heat exposure can lead to hyperthermia in humans,which impairs physical performance and disrupts cognitive function.While heat is a known physiological stressor,it is unclear how severe heat stres...Background:Excessive heat exposure can lead to hyperthermia in humans,which impairs physical performance and disrupts cognitive function.While heat is a known physiological stressor,it is unclear how severe heat stress affects brain physiology and function.Methods:Eleven healthy participants were subjected to heat stress from prolonged exercise or warm water immersion until their rectal temperatures(T_(re))attained 39.5℃,inducing exertional or passive hyperthermia,respectively.In a separate trial,blended ice was ingested before and during exercise as a cooling strategy.Data were compared to a control condition with seated rest(normothermic).Brain temperature(T_(br)),cerebral perfusion,and task-based brain activity were assessed using magnetic resonance imaging techniques.Results:T_(br)in motor cortex was found to be tightly regulated at rest(37.3℃±0.4℃(mean±SD))despite fluctuations in T_(re).With the development of hyperthermia,T_(br)increases and dovetails with the rising T_(re).Bilateral motor cortical activity was suppressed during high-intensity plantarflexion tasks,implying a reduced central motor drive in hyperthermic participants(T_(re)=38.5℃±0.1℃).Global gray matter perfusion and regional perfusion in sensorimotor cortex were reduced with passive hyperthermia.Executive function was poorer under a passive hyperthermic state,and this could relate to compromised visual processing as indicated by the reduced activation of left lateral-occipital cortex.Conversely,ingestion of blended ice before and during exercise alleviated the rise in both T_(re)and T_(bc)and mitigated heat-related neural perturbations.Conclusion:Severe heat exposure elevates T_(br),disrupts motor cortical activity and executive function,and this can lead to impairment of physical and cognitive performance.展开更多
Amblyopia is the most common cause of vision loss in children and can persist into adulthood in the absence of effective intervention.Previous clinical and neuroimaging studies have suggested that the neural mechanism...Amblyopia is the most common cause of vision loss in children and can persist into adulthood in the absence of effective intervention.Previous clinical and neuroimaging studies have suggested that the neural mechanisms underlying strabismic amblyopia and anisometropic amblyopia may be different.Therefore,we performed a systematic review of magnetic resonance imaging studies investigating brain alterations in patients with these two subtypes of amblyopia;this study is registered with PROSPERO(registration ID:CRD42022349191).We searched three online databases(PubMed,EMBASE,and Web of Science) from inception to April 1,2022;39 studies with 633 patients(324patients with anisometropic amblyo pia and 309 patients with strabismic amblyopia) and 580 healthy controls met the inclusion criteria(e.g.,case-control designed,pee r-reviewed articles) and were included in this review.These studies highlighted that both strabismic amblyopia and anisometropic amblyopia patients showed reduced activation and distorted topological cortical activated maps in the striate and extrastriate co rtices during tas k-based functional magnetic resonance imaging with spatial-frequency stimulus and retinotopic representations,respectively;these may have arisen from abnormal visual experiences.Compensations for amblyopia that are reflected in enhanced spontaneous brain function have been reported in the early visual cortices in the resting state,as well as reduced functional connectivity in the dorsal pathway and structural connections in the ventral pathway in both anisometro pic amblyopia and strabismic amblyopia patients.The shared dysfunction of anisometro pic amblyopia and strabismic amblyopia patients,relative to controls,is also chara cterized by reduced spontaneous brain activity in the oculomotor co rtex,mainly involving the frontal and parietal eye fields and the cerebellu m;this may underlie the neural mechanisms of fixation instability and anomalous saccades in amblyopia.With regards to specific alterations of the two forms of amblyo pia,anisometropic amblyo pia patients suffer more microstructural impairments in the precortical pathway than strabismic amblyopia patients,as reflected by diffusion tensor imaging,and more significant dysfunction and structural loss in the ventral pathway.Strabismic amblyopia patients experience more attenuation of activation in the extrastriate co rtex than in the striate cortex when compared to anisometropic amblyopia patients.Finally,brain structural magnetic resonance imaging alterations tend to be lateralized in the adult anisometropic amblyopia patients,and the patterns of brain alterations are more limited in amblyopic adults than in childre n.In conclusion,magnetic resonance imaging studies provide important insights into the brain alterations underlying the pathophysiology of amblyopia and demonstrate common and specific alte rations in anisometropic amblyo pia and strabismic amblyopia patients;these alterations may improve our understanding of the neural mechanisms underlying amblyopia.展开更多
Since the outbreak and spread of corona virus disease 2019(COVID-19),the prevalence of mental disorders,such as depression,has continued to increase.To explore the abnormal changes of brain functional connections in p...Since the outbreak and spread of corona virus disease 2019(COVID-19),the prevalence of mental disorders,such as depression,has continued to increase.To explore the abnormal changes of brain functional connections in patients with depression,this paper proposes a depression analysis method based on brain function network(BFN).To avoid the volume conductor effect,BFN was constructed based on phase lag index(PLI).Then the indicators closely related to depression were selected from weighted BFN based on small-worldness(SW)characteristics and binarization BFN based on the minimum spanning tree(MST).Differences analysis between groups and correlation analysis between these indicators and diagnostic indicators were performed in turn.The resting state electroencephalogram(EEG)data of 24 patients with depression and 29 healthy controls(HC)was used to verify our proposed method.The results showed that compared with HC,the information processing of BFN in patients with depression decreased,and BFN showed a trend of randomization.展开更多
As one of the most widely used languages in the world,Chinese language is distinct from most western languages in many properties,thus providing a unique opportunity for understanding the brain basis of human language...As one of the most widely used languages in the world,Chinese language is distinct from most western languages in many properties,thus providing a unique opportunity for understanding the brain basis of human language and cognition.In recent years,non-invasive neuroimaging techniques such as magnetic resonance imaging(MRI)blaze a new trail to comprehensively study specific neural correlates of Chinese language processing and Chinese speakers.We reviewed the application of functional MRI(fMRI)in such studies and some essential findings on brain systems in processing Chinese.Specifically,for example,the application of task fMRI and resting-state fMRI in observing the process of reading and writing the logographic characters and producing or listening to the tonal speech.Elementary cognitive neuroscience and several potential research directions around brain and Chinese language were discussed,which may be informative for future research.展开更多
The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders.The brain functional network is suitable to bridge the correlat...The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders.The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders.However,it is challenging to access considerable amounts of brain functional network data,which hinders the widespread application of data-driven models in dementia diagnosis.In this study,a novel distribution-regularized adversarial graph auto-Encoder(DAGAE)with transformer is proposed to generate new fake brain functional networks to augment the brain functional network dataset,improving the dementia diagnosis accuracy of data-driven models.Specifically,the label distribution is estimated to regularize the latent space learned by the graph encoder,which canmake the learning process stable and the learned representation robust.Also,the transformer generator is devised to map the node representations into node-to-node connections by exploring the long-term dependence of highly-correlated distant brain regions.The typical topological properties and discriminative features can be preserved entirely.Furthermore,the generated brain functional networks improve the prediction performance using different classifiers,which can be applied to analyze other cognitive diseases.Attempts on the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset demonstrate that the proposed model can generate good brain functional networks.The classification results show adding generated data can achieve the best accuracy value of 85.33%,sensitivity value of 84.00%,specificity value of 86.67%.The proposed model also achieves superior performance compared with other related augmentedmodels.Overall,the proposedmodel effectively improves cognitive disease diagnosis by generating diverse brain functional networks.展开更多
The structure and function of brain networks have been altered in patients with end-stage renal disease(ESRD).Manifold regularization(MR)only considers the pairing relationship between two brain regions and cannot rep...The structure and function of brain networks have been altered in patients with end-stage renal disease(ESRD).Manifold regularization(MR)only considers the pairing relationship between two brain regions and cannot represent functional interactions or higher-order relationships between multiple brain regions.To solve this issue,we developed a method to construct a dynamic brain functional network(DBFN)based on dynamic hypergraph MR(DHMR)and applied it to the classification of ESRD associated with mild cognitive impairment(ESRDaMCI).The construction of DBFN with Pearson’s correlation(PC)was transformed into an optimization model.Node convolution and hyperedge convolution superposition were adopted to dynamically modify the hypergraph structure,and then got the dynamic hypergraph to form the manifold regular terms of the dynamic hypergraph.The DHMR and L_(1) norm regularization were introduced into the PC-based optimization model to obtain the final DHMR-based DBFN(DDBFN).Experiment results demonstrated the validity of the DDBFN method by comparing the classification results with several related brain functional network construction methods.Our work not only improves better classification performance but also reveals the discriminative regions of ESRDaMCI,providing a reference for clinical research and auxiliary diagnosis of concomitant cognitive impairments.展开更多
Modified constraint-induced movement therapy(mCIMT)has shown beneficial effects on motor function improvement after brain injury,but the exact mechanism remains unclear.In this study,amplitude of low frequency fluctua...Modified constraint-induced movement therapy(mCIMT)has shown beneficial effects on motor function improvement after brain injury,but the exact mechanism remains unclear.In this study,amplitude of low frequency fluctuation(ALFF)metrics measured by resting-state functional magnetic resonance imaging was obtained to investigate the efficacy and mechanism of mCIMT in a control co rtical impact(CCI)rat model simulating traumatic brain injury.At 3 days after control co rtical impact model establishment,we found that the mean ALFF(mALFF)signals were decreased in the left motor cortex,somatosensory co rtex,insula cortex and the right motor co rtex,and were increased in the right corpus callosum.After 3 weeks of an 8-hour daily mClMT treatment,the mALFF values were significantly increased in the bilateral hemispheres compared with those at 3 days postoperatively.The mALFF signal valu es of left corpus callosum,left somatosensory cortex,right medial prefro ntal cortex,right motor co rtex,left postero dorsal hippocampus,left motor cortex,right corpus callosum,and right somatosensory cortex were increased in the mCIMT group compared with the control cortical impact group.Finally,we identified brain regions with significantly decreased mALFF valu es at 3 days postoperatively.Pearson correlation coefficients with the right forelimb sliding score indicated that the improvement in motor function of the affected upper limb was associated with an increase in mALFF values in these brain regions.Our findings suggest that functional co rtical plasticity changes after brain injury,and that mCIMT is an effective method to improve affected upper limb motor function by promoting bilateral hemispheric co rtical remodeling.mALFF values correlate with behavio ral changes and can potentially be used as biomarkers to assess dynamic cortical plasticity after traumatic brain injury.展开更多
Functional brain networks (FBN) based on resting-state functional magnetic resonance imaging (rs-fMRI) have become an important tool for exploring underlying organization patterns in the brain, which can provide an ob...Functional brain networks (FBN) based on resting-state functional magnetic resonance imaging (rs-fMRI) have become an important tool for exploring underlying organization patterns in the brain, which can provide an objective basis for brain disorders such as autistic spectrum disorder (ASD). Due to its importance, researchers have proposed a number of FBN estimation methods. However, most existing methods only model a type of functional connection relationship between brain regions-of-interest (ROIs), such as partial correlation or full correlation, which is difficult to fully capture the subtle connections among ROIs since these connections are extremely complex. Motivated by the multi-view learning, in this study we propose a novel Consistent and Specific Multi-view FBNs Fusion (CSMF) approach. Concretely, we first construct multi-view FBNs (i.e., multiple types of FBNs modelling various relationships among ROIs), and then these FBNs are decomposed into a consistent representation matrix and their own specific matrices which capture their common and unique information, respectively. Lastly, to obtain a better brain representation, it is fusing the consistent and specific representation matrices in the latent representation spaces of FBNs, but not directly fusing the original FBNs. This potentially makes it more easily to find the comprehensively brain connections. The experimental results of ASD identification on the ABIDE datasets validate the effectiveness of our proposed method compared to several state-of-the-art methods. Our proposed CSMF method achieved 72.8% and 76.67% classification performance on the ABIDE dataset.展开更多
BACKGROUND Chronic heart failure(CHF)is a serious and prevalent condition characterized by impaired cardiac function and inflammation.Standard therapy for CHF has limitations,prompting the exploration of alternative t...BACKGROUND Chronic heart failure(CHF)is a serious and prevalent condition characterized by impaired cardiac function and inflammation.Standard therapy for CHF has limitations,prompting the exploration of alternative treatments.Recombinant human brain natriuretic peptide(BNP)has emerged as a potential therapy,with evidence suggesting that it can improve cardiac function and reduce inflammation in patients with CHF.However,further research is required to determine the efficacy and safety of lyophilized recombinant human BNP in CHF patients and its impact on microinflammatory status.This study aimed to investigate the effects of lyophilized recombinant human BNP therapy on CHF patients’cardiac function and microinflammatory status.AIM To investigate the effects of freeze-dried recombinant human BNP therapy on cardiac function and microinflammatory status in patients with CHF.METHODS In total,102 CHF patients admitted to our hospital from January 2021 to January 2022 were randomly assigned to control and observation groups(n=51 patients/group).The control patients were treated with standard HF therapy for 3 d,whereas the observational patients were injected with the recombinant human BNP for 3 d.Clinical efficacy,inflammatory factor levels,myocardial damage,cardiac function before and after the treatment,and adverse reactions during treatment were compared between the two groups.RESULTS The overall clinical efficacy was higher in the observation group than in the control group.Compared with baseline,serum hypersensitive C-reactive protein,N-terminal proBNP,and troponin I level,and physical,emotional,social,and economic scores were lower in both groups after treatment,with greater reductions in levels and scores noted in the observation group than in the control group.The overall incidence of adverse reactions in the observation group was not significantly different compared with that in the control group(P>0.05).CONCLUSION Freeze-dried recombinant human BNP therapy can improve heart function and enhance microinflammatory status,thereby improving overall quality of life without any obvious side effects.This therapy is safe and reliable.展开更多
Interactions between the central nervous system(CNS)and autonomic nervous system(ANS)play a crucial role in modulating perception,cognition,and emotion production.Previous studies on CNS–ANS interactions,or heart–br...Interactions between the central nervous system(CNS)and autonomic nervous system(ANS)play a crucial role in modulating perception,cognition,and emotion production.Previous studies on CNS–ANS interactions,or heart–brain coupling,have often used heart rate variability(HRV)metrics derived from electrocardiography(ECG)recordings as empirical measurements of sympathetic and parasympathetic activities.Functional near-infrared spectroscopy(fNIRS)is a functional brain imaging modality that is increasingly used in brain and cognition studies.The fNIRS signals contain frequency bands representing both neural activity oscillations and heartbeat rhythms.Therefore,fNIRS data acquired in neuroimaging studies can potentially provide a single-modality approach to measure task-induced responses in the brain and ANS synchronously,allowing analysis of CNS–ANS interactions.In this proof-of-concept study,fNIRS was used to record hemodynamic changes from the foreheads of 20 university students as they each played a round of multiplayer online battle arena(MOBA)game.From the fNIRS recordings,neural and heartbeat frequency bands were extracted to assess prefrontal activities and shortterm pulse rate variability(PRV),an approximation for short-term HRV,respectively.Under the experimental conditions used,fNIRS-derived PRV metrics showed good correlations with ECG-derived HRV golden standards,in terms of absolute measurements and video game playing(VGP)-related changes.It was also observed that,similar to previous studies on physical activity and exercise,the PRV metrics closely related to parasympathetic activities recovered slower than the PRV indicators of sympathetic activities after VGP.It is concluded that it is feasible to use fNIRS to monitor concurrent brain and ANS activations during online VGP,facilitating the understanding of VGP-related heart–brain coupling.展开更多
In the present study, 10 patients with ischemic stroke in the left hemisphere and six healthy controls were subjected to acupuncture at right Waiguan (TE5). In ischemic stroke subjects, functional MRI showed enhance...In the present study, 10 patients with ischemic stroke in the left hemisphere and six healthy controls were subjected to acupuncture at right Waiguan (TE5). In ischemic stroke subjects, functional MRI showed enhanced activation in Broadmann areas 5, 6, 7, 18, 19, 24, 32, the hypothalamic inferior lobe, the mamiilary body, and the ventral posterolateral nucleus of the left hemisphere, and Broadmann areas 4, 6, 7, 18, 19 and 32 of the right hemisphere, but attenuated activation of Broadmann area 13, the hypothalamic inferior lobe, the posterior lobe of the tonsil of cerebellum, and the culmen of the anterior lobe of hypophysis, in the left hemisphere and Broadmann area 13 in the right hemisphere. In ischemic stroke subjects, a number of deactivated brain areas were enhanced, including Broadmann areas 6, 11,20, 22, 37, and 47, the culmen of the anterior lobe of hypophysis, alae lingulae cerebella, and the posterior lobe of the tonsil of cerebellum of the left hemisphere, and Broadmann areas 8, 37, 45 and 47, the culmen of the anterior lobe of hypophysis, pars tuberalis adenohypophyseos, inferior border of lentiform nucleus, lateral globus pallidus, inferior temporal gyrus, and the parahippocampal gyrus of the right hemisphere. These subjects also exhibited attenuation of a number of deactivated brain areas, including Broadmann area 7. These data suggest that acupuncture at Waiguan specifically alters brain function in regions associated with sensation, vision, and motion in ischemic stroke patients. By contrast, in normal individuals, acupuncture at Waiguan generally activates brain areas associated with insomnia and other functions.展开更多
We conducted a systematic review of studies using non-invasive brain stimulation(NIBS: repetitive transcranial magnetic stimulation(r TMS) and transcranial direct current stimulation(t DCS)) as a research and c...We conducted a systematic review of studies using non-invasive brain stimulation(NIBS: repetitive transcranial magnetic stimulation(r TMS) and transcranial direct current stimulation(t DCS)) as a research and clinical tool aimed at improving motor and functional recovery or spasticity in patients following spinal cord injury(SCI) under the assumption that if the residual corticospinal circuits could be stimulated appropriately, the changes might be accompanied by functional recovery or an improvement in spasticity. This review summarizes the literature on the changes induced by NIBS in the motor and functional recovery and spasticity control of the upper and lower extremities following SCI.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81671671(to JL),61971451(to JL),U22A2034(to XK),62177047(to XK)the National Defense Science and Technology Collaborative Innovation Major Project of Central South University,No.2021gfcx05(to JL)+6 种基金Clinical Research Cen terfor Medical Imaging of Hunan Province,No.2020SK4001(to JL)Key Emergency Project of Pneumonia Epidemic of Novel Coronavirus Infection of Hu nan Province,No.2020SK3006(to JL)Innovative Special Construction Foundation of Hunan Province,No.2019SK2131(to JL)the Science and Technology lnnovation Program of Hunan Province,Nos.2021RC4016(to JL),2021SK53503(to ML)Scientific Research Program of Hunan Commission of Health,No.202209044797(to JL)Central South University Research Program of Advanced Interdisciplinary Studies,No.2023Q YJC020(to XK)the Natural Science Foundation of Hunan Province,No.2022JJ30814(to ML)。
文摘Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.
基金supported by the National Natural Science Foundation of China,Nos.81871836(to MZ),82172554(to XH),and 81802249(to XH),81902301(to JW)the National Key R&D Program of China,Nos.2018YFC2001600(to JX)and 2018YFC2001604(to JX)+3 种基金Shanghai Rising Star Program,No.19QA1409000(to MZ)Shanghai Municipal Commission of Health and Family Planning,No.2018YQ02(to MZ)Shanghai Youth Top Talent Development PlanShanghai“Rising Stars of Medical Talent”Youth Development Program,No.RY411.19.01.10(to XH)。
文摘Distinct brain remodeling has been found after different nerve reconstruction strategies,including motor representation of the affected limb.However,differences among reconstruction strategies at the brain network level have not been elucidated.This study aimed to explore intranetwork changes related to altered peripheral neural pathways after different nerve reconstruction surgeries,including nerve repair,endto-end nerve transfer,and end-to-side nerve transfer.Sprague–Dawley rats underwent complete left brachial plexus transection and were divided into four equal groups of eight:no nerve repair,grafted nerve repair,phrenic nerve end-to-end transfer,and end-to-side transfer with a graft sutured to the anterior upper trunk.Resting-state brain functional magnetic resonance imaging was obtained 7 months after surgery.The independent component analysis algorithm was utilized to identify group-level network components of interest and extract resting-state functional connectivity values of each voxel within the component.Alterations in intra-network resting-state functional connectivity were compared among the groups.Target muscle reinnervation was assessed by behavioral observation(elbow flexion)and electromyography.The results showed that alterations in the sensorimotor and interoception networks were mostly related to changes in the peripheral neural pathway.Nerve repair was related to enhanced connectivity within the sensorimotor network,while end-to-side nerve transfer might be more beneficial for restoring control over the affected limb by the original motor representation.The thalamic-cortical pathway was enhanced within the interoception network after nerve repair and end-to-end nerve transfer.Brain areas related to cognition and emotion were enhanced after end-to-side nerve transfer.Our study revealed important brain networks related to different nerve reconstructions.These networks may be potential targets for enhancing motor recovery.
基金sponsored by the National Defense Science and Technology Key Laboratory Fund(Grant No.61422062205)the Equipment Pre-Research Fund(Grant No.JCKYS2022LD9)。
文摘Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby contributing to the advancement of camouflage evaluation.In this study,images with various camouflage effects were presented to observers to generate electroencephalography(EEG)signals,which were then used to construct a brain functional network.The topological parameters of the network were subsequently extracted and input into a machine learning model for training.The results indicate that most of the classifiers achieved accuracy rates exceeding 70%.Specifically,the Logistic algorithm achieved an accuracy of 81.67%.Therefore,it is possible to predict target camouflage effectiveness with high accuracy without the need to calculate discovery probability.The proposed method fully considers the aspects of human visual and cognitive processes,overcomes the subjectivity of human interpretation,and achieves stable and reliable accuracy.
文摘Background: The mechanisms by which acupuncture affects poststroke cognitive impairment (PSCI) remain unclear. Objective: To investigate brain functional network (BFN) changes in patients with PSCI after acupuncture therapy. Methods: Twenty-two PSCI patients who underwent acupuncture therapy in our hospital were enrolled as research subjects. Another 14 people matched for age, sex, and education level were included in the normal control (HC) group. All the subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI) scans;the PSCI patients underwent one scan before acupuncture therapy and another after. The network metric difference between PSCI patients and HCs was analyzed via the independent-sample t test, whereas the paired-sample t test was employed to analyze the network metric changes in PSCI patients before vs. after treatment. Results: Small-world network attributes were observed in both groups for sparsities between 0.1 and 0.28. Compared with the HC group, the PSCI group presented significantly lower values for the global topological properties (γ, Cp, and Eloc) of the brain;significantly greater values for the nodal attributes of betweenness centrality in the CUN. L and the HES. R, degree centrality in the SFGdor. L, PCG. L, IPL. L, and HES. R, and nodal local efficiency in the ORBsup. R, ORBsupmed. R, DCG. L, SMG. R, and TPOsup. L;and decreased degree centrality in the MFG. R, IFGoperc. R, and SOG. R. After treatment, PSCI patients presented increased degree centrality in the LING.L, LING.R, and IOG. L and nodal local efficiency in PHG. L, IOG. R, FFG. L, and the HES. L, and decreased betweenness centrality in the PCG. L and CUN. L, degree centrality in the ORBsupmed. R, and nodal local efficiency in ANG. R. Conclusion: Cognitive decline in PSCI patients may be related to BFN disorders;acupuncture therapy may modulate the topological properties of the BFNs of PSCI patients.
基金supported by the National Natural Science Foundation of China,Nos.82204360(to HM)and 82270411(to GW)National Science and Technology Innovation 2030 Major Program,No.2021ZD0200900(to YL)。
文摘Traumatic brain injury involves complex pathophysiological mechanisms,among which oxidative stress significantly contributes to the occurrence of secondary injury.In this study,we evaluated hypidone hydrochloride(YL-0919),a self-developed antidepressant with selective sigma-1 receptor agonist properties,and its associated mechanisms and targets in traumatic brain injury.Behavioral experiments to assess functional deficits were followed by assessment of neuronal damage through histological analyses and examination of blood-brain barrier permeability and brain edema.Next,we investigated the antioxidative effects of YL-0919 by assessing the levels of traditional markers of oxidative stress in vivo in mice and in vitro in HT22 cells.Finally,the targeted action of YL-0919 was verified by employing a sigma-1 receptor antagonist(BD-1047).Our findings demonstrated that YL-0919 markedly improved deficits in motor function and spatial cognition on day 3 post traumatic brain injury,while also decreasing neuronal mortality and reversing blood-brain barrier disruption and brain edema.Furthermore,YL-0919 effectively combated oxidative stress both in vivo and in vitro.The protective effects of YL-0919 were partially inhibited by BD-1047.These results indicated that YL-0919 relieved impairments in motor and spatial cognition by restraining oxidative stress,a neuroprotective effect that was partially reversed by the sigma-1 receptor antagonist BD-1047.YL-0919 may have potential as a new treatment for traumatic brain injury.
基金Supported by the National Social Science Foundation,No.18BY0911.
文摘BACKGROUND Understanding the impact of early sensory deficits on brain development is essential for understanding developmental processes and developing potential interventions.While previous studies have looked into the impact of prenatal experiences on language development,there is a lack of research on how these experiences affect early language and brain function development in individuals with sensorineural hearing loss(SNHL).AIM To investigate SNHL effects on early brain development and connectivity in 4-month-olds vs healthy newborns and controls.METHODS The research involved analyzing the functional brain networks of 65 infants,categorized into three groups:28 healthy newborns,224-month-old participants with SNHL,and 15 age-matched healthy participants.The resting-state functional connectivity was measured and compared between the groups using functional near-infrared spectroscopy and graph theory to assess the brain network properties.RESULTS Significant differences were found in resting-state functional connectivity between participants with SNHL and age-matched controls,indicating a developmental lag in brain connectivity for those with SNHL.Surprisingly,SNHL participants showed better connectivity development compared to healthy newborns,with connectivity strengths of 0.13±0.04 for SNHL,0.16±0.08 for controls,and 0.098±0.04 for newborns.Graph theory analysis revealed enhanced global brain network properties for the SNHL group,suggesting higher communication efficiency at 4 months.No significant differences were noted in network properties between 4-month-old SNHL participants and neonates.A unique pattern of central hubs was observed in the SNHL group,with 2 hubs in the left hemisphere compared to 6 in controls.CONCLUSION 4-month-old infants with SNHL have a distinct brain network pattern with efficient long-distance information transmission but less effective local communication compared to age-matched controls.
基金supported by the National Natural Science Foundation of China(No.51877013),(ZJ),(http://www.nsfc.gov.cn/)the Natural Science Foundation of Jiangsu Province(No.BK20181463),(ZJ),(http://kxjst.jiangsu.gov.cn/)sponsored by Qing Lan Project of Jiangsu Province(no specific grant number),(ZJ),(http://jyt.jiangsu.gov.cn/).
文摘Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the disease may affect some local connectivity in the brain functional network.That is,there are functional abnormalities in the sub-network.Therefore,it is crucial to accurately identify them in pathological diagnosis.To solve these problems,we proposed a sub-network extraction method based on graph regularization nonnegative matrix factorization(GNMF).The dynamic functional networks of normal subjects and early mild cognitive impairment(eMCI)subjects were vectorized and the functional connection vectors(FCV)were assembled to aggregation matrices.Then GNMF was applied to factorize the aggregation matrix to get the base matrix,in which the column vectors were restored to a common sub-network and a distinctive sub-network,and visualization and statistical analysis were conducted on the two sub-networks,respectively.Experimental results demonstrated that,compared with other matrix factorization methods,the proposed method can more obviously reflect the similarity between the common subnetwork of eMCI subjects and normal subjects,as well as the difference between the distinctive sub-network of eMCI subjects and normal subjects,Therefore,the high-dimensional features in brain functional networks can be best represented locally in the lowdimensional space,which provides a new idea for studying brain functional connectomes.
文摘Non-invasive cerebral neuromodulation technologies are essential for the reorganization of cerebral neural networks,which have been widely applied in the field of central neurological diseases,such as stroke,Parkinson’s disease,and mental disorders.Although significant advances have been made in neuromodulation technologies,the identification of optimal neurostimulation paramete rs including the co rtical target,duration,and inhibition or excitation pattern is still limited due to the lack of guidance for neural circuits.Moreove r,the neural mechanism unde rlying neuromodulation for improved behavioral performance remains poorly understood.Recently,advancements in neuroimaging have provided insight into neuromodulation techniques.Functional near-infrared spectroscopy,as a novel non-invasive optical brain imaging method,can detect brain activity by measuring cerebral hemodynamics with the advantages of portability,high motion tole rance,and anti-electromagnetic interference.Coupling functional near-infra red spectroscopy with neuromodulation technologies offe rs an opportunity to monitor the cortical response,provide realtime feedbac k,and establish a closed-loop strategy integrating evaluation,feedbac k,and intervention for neurostimulation,which provides a theoretical basis for development of individualized precise neuro rehabilitation.We aimed to summarize the advantages of functional near-infra red spectroscopy and provide an ove rview of the current research on functional near-infrared spectroscopy in transcranial magnetic stimulation,transcranial electrical stimulation,neurofeedback,and braincomputer interfaces.Furthermore,the future perspectives and directions for the application of functional near-infrared spectroscopy in neuromodulation are summarized.In conclusion,functional near-infrared spectroscopy combined with neuromodulation may promote the optimization of central pellral reorganization to achieve better functional recovery form central nervous system diseases.
基金supported by Defence Innovative Research Program(DIRP)Grant(PA No.9015102335)from Defence Research&Technology Office,Ministry of Defence,Singapore。
文摘Background:Excessive heat exposure can lead to hyperthermia in humans,which impairs physical performance and disrupts cognitive function.While heat is a known physiological stressor,it is unclear how severe heat stress affects brain physiology and function.Methods:Eleven healthy participants were subjected to heat stress from prolonged exercise or warm water immersion until their rectal temperatures(T_(re))attained 39.5℃,inducing exertional or passive hyperthermia,respectively.In a separate trial,blended ice was ingested before and during exercise as a cooling strategy.Data were compared to a control condition with seated rest(normothermic).Brain temperature(T_(br)),cerebral perfusion,and task-based brain activity were assessed using magnetic resonance imaging techniques.Results:T_(br)in motor cortex was found to be tightly regulated at rest(37.3℃±0.4℃(mean±SD))despite fluctuations in T_(re).With the development of hyperthermia,T_(br)increases and dovetails with the rising T_(re).Bilateral motor cortical activity was suppressed during high-intensity plantarflexion tasks,implying a reduced central motor drive in hyperthermic participants(T_(re)=38.5℃±0.1℃).Global gray matter perfusion and regional perfusion in sensorimotor cortex were reduced with passive hyperthermia.Executive function was poorer under a passive hyperthermic state,and this could relate to compromised visual processing as indicated by the reduced activation of left lateral-occipital cortex.Conversely,ingestion of blended ice before and during exercise alleviated the rise in both T_(re)and T_(bc)and mitigated heat-related neural perturbations.Conclusion:Severe heat exposure elevates T_(br),disrupts motor cortical activity and executive function,and this can lead to impairment of physical and cognitive performance.
文摘Amblyopia is the most common cause of vision loss in children and can persist into adulthood in the absence of effective intervention.Previous clinical and neuroimaging studies have suggested that the neural mechanisms underlying strabismic amblyopia and anisometropic amblyopia may be different.Therefore,we performed a systematic review of magnetic resonance imaging studies investigating brain alterations in patients with these two subtypes of amblyopia;this study is registered with PROSPERO(registration ID:CRD42022349191).We searched three online databases(PubMed,EMBASE,and Web of Science) from inception to April 1,2022;39 studies with 633 patients(324patients with anisometropic amblyo pia and 309 patients with strabismic amblyopia) and 580 healthy controls met the inclusion criteria(e.g.,case-control designed,pee r-reviewed articles) and were included in this review.These studies highlighted that both strabismic amblyopia and anisometropic amblyopia patients showed reduced activation and distorted topological cortical activated maps in the striate and extrastriate co rtices during tas k-based functional magnetic resonance imaging with spatial-frequency stimulus and retinotopic representations,respectively;these may have arisen from abnormal visual experiences.Compensations for amblyopia that are reflected in enhanced spontaneous brain function have been reported in the early visual cortices in the resting state,as well as reduced functional connectivity in the dorsal pathway and structural connections in the ventral pathway in both anisometro pic amblyopia and strabismic amblyopia patients.The shared dysfunction of anisometro pic amblyopia and strabismic amblyopia patients,relative to controls,is also chara cterized by reduced spontaneous brain activity in the oculomotor co rtex,mainly involving the frontal and parietal eye fields and the cerebellu m;this may underlie the neural mechanisms of fixation instability and anomalous saccades in amblyopia.With regards to specific alterations of the two forms of amblyo pia,anisometropic amblyo pia patients suffer more microstructural impairments in the precortical pathway than strabismic amblyopia patients,as reflected by diffusion tensor imaging,and more significant dysfunction and structural loss in the ventral pathway.Strabismic amblyopia patients experience more attenuation of activation in the extrastriate co rtex than in the striate cortex when compared to anisometropic amblyopia patients.Finally,brain structural magnetic resonance imaging alterations tend to be lateralized in the adult anisometropic amblyopia patients,and the patterns of brain alterations are more limited in amblyopic adults than in childre n.In conclusion,magnetic resonance imaging studies provide important insights into the brain alterations underlying the pathophysiology of amblyopia and demonstrate common and specific alte rations in anisometropic amblyo pia and strabismic amblyopia patients;these alterations may improve our understanding of the neural mechanisms underlying amblyopia.
基金supported by the National Natural Science Foundation of China(Nos.61962034,61862058)Longyuan Youth Innovation and Entrepreneurship Talent(Individual)Project and Tianyou Youth Talent Lift Program of Lanzhou Jiaotong Univesity。
文摘Since the outbreak and spread of corona virus disease 2019(COVID-19),the prevalence of mental disorders,such as depression,has continued to increase.To explore the abnormal changes of brain functional connections in patients with depression,this paper proposes a depression analysis method based on brain function network(BFN).To avoid the volume conductor effect,BFN was constructed based on phase lag index(PLI).Then the indicators closely related to depression were selected from weighted BFN based on small-worldness(SW)characteristics and binarization BFN based on the minimum spanning tree(MST).Differences analysis between groups and correlation analysis between these indicators and diagnostic indicators were performed in turn.The resting state electroencephalogram(EEG)data of 24 patients with depression and 29 healthy controls(HC)was used to verify our proposed method.The results showed that compared with HC,the information processing of BFN in patients with depression decreased,and BFN showed a trend of randomization.
基金the National Natural Scientific Foundation of China(Grants 81790650,81790651,81727808,81627901,and 31771253)the Beijing Municipal Science and Technology Commission(Grants Z171100000117012 and Z181100001518003)the Collaborative Research Fund of the Chinese Institute for Brain Research,Beijing(No.2020-NKXPT-02).
文摘As one of the most widely used languages in the world,Chinese language is distinct from most western languages in many properties,thus providing a unique opportunity for understanding the brain basis of human language and cognition.In recent years,non-invasive neuroimaging techniques such as magnetic resonance imaging(MRI)blaze a new trail to comprehensively study specific neural correlates of Chinese language processing and Chinese speakers.We reviewed the application of functional MRI(fMRI)in such studies and some essential findings on brain systems in processing Chinese.Specifically,for example,the application of task fMRI and resting-state fMRI in observing the process of reading and writing the logographic characters and producing or listening to the tonal speech.Elementary cognitive neuroscience and several potential research directions around brain and Chinese language were discussed,which may be informative for future research.
基金This paper is partially supported by the British Heart Foundation Accelerator Award,UK(AA\18\3\34220)Royal Society International Exchanges Cost Share Award,UK(RP202G0230)+9 种基金Hope Foundation for Cancer Research,UK(RM60G0680)Medical Research Council Confidence in Concept Award,UK(MC_PC_17171)Sino-UK Industrial Fund,UK(RP202G0289)Global Challenges Research Fund(GCRF),UK(P202PF11)LIAS Pioneering Partnerships Award,UK(P202ED10)Data Science Enhancement Fund,UK(P202RE237)Fight for Sight,UK(24NN201)Sino-UK Education Fund,UK(OP202006)Biotechnology and Biological Sciences Research Council,UK(RM32G0178B8)LIAS Seed Corn,UK(P202RE969).
文摘The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders.The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders.However,it is challenging to access considerable amounts of brain functional network data,which hinders the widespread application of data-driven models in dementia diagnosis.In this study,a novel distribution-regularized adversarial graph auto-Encoder(DAGAE)with transformer is proposed to generate new fake brain functional networks to augment the brain functional network dataset,improving the dementia diagnosis accuracy of data-driven models.Specifically,the label distribution is estimated to regularize the latent space learned by the graph encoder,which canmake the learning process stable and the learned representation robust.Also,the transformer generator is devised to map the node representations into node-to-node connections by exploring the long-term dependence of highly-correlated distant brain regions.The typical topological properties and discriminative features can be preserved entirely.Furthermore,the generated brain functional networks improve the prediction performance using different classifiers,which can be applied to analyze other cognitive diseases.Attempts on the Alzheimer’s Disease Neuroimaging Initiative(ADNI)dataset demonstrate that the proposed model can generate good brain functional networks.The classification results show adding generated data can achieve the best accuracy value of 85.33%,sensitivity value of 84.00%,specificity value of 86.67%.The proposed model also achieves superior performance compared with other related augmentedmodels.Overall,the proposedmodel effectively improves cognitive disease diagnosis by generating diverse brain functional networks.
基金supported by the National Natural Science Foundation of China (No.51877013),(ZJ),(http://www.nsfc.gov.cn/)the Jiangsu Provincial Key Research and Development Program (No.BE2021636),(ZJ),(http://kxjst.jiangsu.gov.cn/)+1 种基金the Science and Technology Project of Changzhou City (No.CE20205056),(ZJ),(http://kjj.changzhou.gov.cn/)by Qing Lan Project of Jiangsu Province (no specific grant number),(ZJ),(http://jyt.jiangsu.gov.cn/).
文摘The structure and function of brain networks have been altered in patients with end-stage renal disease(ESRD).Manifold regularization(MR)only considers the pairing relationship between two brain regions and cannot represent functional interactions or higher-order relationships between multiple brain regions.To solve this issue,we developed a method to construct a dynamic brain functional network(DBFN)based on dynamic hypergraph MR(DHMR)and applied it to the classification of ESRD associated with mild cognitive impairment(ESRDaMCI).The construction of DBFN with Pearson’s correlation(PC)was transformed into an optimization model.Node convolution and hyperedge convolution superposition were adopted to dynamically modify the hypergraph structure,and then got the dynamic hypergraph to form the manifold regular terms of the dynamic hypergraph.The DHMR and L_(1) norm regularization were introduced into the PC-based optimization model to obtain the final DHMR-based DBFN(DDBFN).Experiment results demonstrated the validity of the DDBFN method by comparing the classification results with several related brain functional network construction methods.Our work not only improves better classification performance but also reveals the discriminative regions of ESRDaMCI,providing a reference for clinical research and auxiliary diagnosis of concomitant cognitive impairments.
基金supported by the National Key R&D Program of China,Nos.2020YFC2004202(to DSX),2018 YFC2001600(to XYH)the National Natural Science Foundation of China,Nos.81974358(to DSX),81802249(to XYH)and 82172554(to XYH)。
文摘Modified constraint-induced movement therapy(mCIMT)has shown beneficial effects on motor function improvement after brain injury,but the exact mechanism remains unclear.In this study,amplitude of low frequency fluctuation(ALFF)metrics measured by resting-state functional magnetic resonance imaging was obtained to investigate the efficacy and mechanism of mCIMT in a control co rtical impact(CCI)rat model simulating traumatic brain injury.At 3 days after control co rtical impact model establishment,we found that the mean ALFF(mALFF)signals were decreased in the left motor cortex,somatosensory co rtex,insula cortex and the right motor co rtex,and were increased in the right corpus callosum.After 3 weeks of an 8-hour daily mClMT treatment,the mALFF values were significantly increased in the bilateral hemispheres compared with those at 3 days postoperatively.The mALFF signal valu es of left corpus callosum,left somatosensory cortex,right medial prefro ntal cortex,right motor co rtex,left postero dorsal hippocampus,left motor cortex,right corpus callosum,and right somatosensory cortex were increased in the mCIMT group compared with the control cortical impact group.Finally,we identified brain regions with significantly decreased mALFF valu es at 3 days postoperatively.Pearson correlation coefficients with the right forelimb sliding score indicated that the improvement in motor function of the affected upper limb was associated with an increase in mALFF values in these brain regions.Our findings suggest that functional co rtical plasticity changes after brain injury,and that mCIMT is an effective method to improve affected upper limb motor function by promoting bilateral hemispheric co rtical remodeling.mALFF values correlate with behavio ral changes and can potentially be used as biomarkers to assess dynamic cortical plasticity after traumatic brain injury.
文摘Functional brain networks (FBN) based on resting-state functional magnetic resonance imaging (rs-fMRI) have become an important tool for exploring underlying organization patterns in the brain, which can provide an objective basis for brain disorders such as autistic spectrum disorder (ASD). Due to its importance, researchers have proposed a number of FBN estimation methods. However, most existing methods only model a type of functional connection relationship between brain regions-of-interest (ROIs), such as partial correlation or full correlation, which is difficult to fully capture the subtle connections among ROIs since these connections are extremely complex. Motivated by the multi-view learning, in this study we propose a novel Consistent and Specific Multi-view FBNs Fusion (CSMF) approach. Concretely, we first construct multi-view FBNs (i.e., multiple types of FBNs modelling various relationships among ROIs), and then these FBNs are decomposed into a consistent representation matrix and their own specific matrices which capture their common and unique information, respectively. Lastly, to obtain a better brain representation, it is fusing the consistent and specific representation matrices in the latent representation spaces of FBNs, but not directly fusing the original FBNs. This potentially makes it more easily to find the comprehensively brain connections. The experimental results of ASD identification on the ABIDE datasets validate the effectiveness of our proposed method compared to several state-of-the-art methods. Our proposed CSMF method achieved 72.8% and 76.67% classification performance on the ABIDE dataset.
文摘BACKGROUND Chronic heart failure(CHF)is a serious and prevalent condition characterized by impaired cardiac function and inflammation.Standard therapy for CHF has limitations,prompting the exploration of alternative treatments.Recombinant human brain natriuretic peptide(BNP)has emerged as a potential therapy,with evidence suggesting that it can improve cardiac function and reduce inflammation in patients with CHF.However,further research is required to determine the efficacy and safety of lyophilized recombinant human BNP in CHF patients and its impact on microinflammatory status.This study aimed to investigate the effects of lyophilized recombinant human BNP therapy on CHF patients’cardiac function and microinflammatory status.AIM To investigate the effects of freeze-dried recombinant human BNP therapy on cardiac function and microinflammatory status in patients with CHF.METHODS In total,102 CHF patients admitted to our hospital from January 2021 to January 2022 were randomly assigned to control and observation groups(n=51 patients/group).The control patients were treated with standard HF therapy for 3 d,whereas the observational patients were injected with the recombinant human BNP for 3 d.Clinical efficacy,inflammatory factor levels,myocardial damage,cardiac function before and after the treatment,and adverse reactions during treatment were compared between the two groups.RESULTS The overall clinical efficacy was higher in the observation group than in the control group.Compared with baseline,serum hypersensitive C-reactive protein,N-terminal proBNP,and troponin I level,and physical,emotional,social,and economic scores were lower in both groups after treatment,with greater reductions in levels and scores noted in the observation group than in the control group.The overall incidence of adverse reactions in the observation group was not significantly different compared with that in the control group(P>0.05).CONCLUSION Freeze-dried recombinant human BNP therapy can improve heart function and enhance microinflammatory status,thereby improving overall quality of life without any obvious side effects.This therapy is safe and reliable.
基金supported by a grant from the National Natural Science Foundation of China(Grant No.21790392).
文摘Interactions between the central nervous system(CNS)and autonomic nervous system(ANS)play a crucial role in modulating perception,cognition,and emotion production.Previous studies on CNS–ANS interactions,or heart–brain coupling,have often used heart rate variability(HRV)metrics derived from electrocardiography(ECG)recordings as empirical measurements of sympathetic and parasympathetic activities.Functional near-infrared spectroscopy(fNIRS)is a functional brain imaging modality that is increasingly used in brain and cognition studies.The fNIRS signals contain frequency bands representing both neural activity oscillations and heartbeat rhythms.Therefore,fNIRS data acquired in neuroimaging studies can potentially provide a single-modality approach to measure task-induced responses in the brain and ANS synchronously,allowing analysis of CNS–ANS interactions.In this proof-of-concept study,fNIRS was used to record hemodynamic changes from the foreheads of 20 university students as they each played a round of multiplayer online battle arena(MOBA)game.From the fNIRS recordings,neural and heartbeat frequency bands were extracted to assess prefrontal activities and shortterm pulse rate variability(PRV),an approximation for short-term HRV,respectively.Under the experimental conditions used,fNIRS-derived PRV metrics showed good correlations with ECG-derived HRV golden standards,in terms of absolute measurements and video game playing(VGP)-related changes.It was also observed that,similar to previous studies on physical activity and exercise,the PRV metrics closely related to parasympathetic activities recovered slower than the PRV indicators of sympathetic activities after VGP.It is concluded that it is feasible to use fNIRS to monitor concurrent brain and ANS activations during online VGP,facilitating the understanding of VGP-related heart–brain coupling.
基金supported by the National Basic Research Program of China(973 Program),No.2006CB504505,2012CB518504the Third Key Construction Program of "211 Project" of Guangdong Province
文摘In the present study, 10 patients with ischemic stroke in the left hemisphere and six healthy controls were subjected to acupuncture at right Waiguan (TE5). In ischemic stroke subjects, functional MRI showed enhanced activation in Broadmann areas 5, 6, 7, 18, 19, 24, 32, the hypothalamic inferior lobe, the mamiilary body, and the ventral posterolateral nucleus of the left hemisphere, and Broadmann areas 4, 6, 7, 18, 19 and 32 of the right hemisphere, but attenuated activation of Broadmann area 13, the hypothalamic inferior lobe, the posterior lobe of the tonsil of cerebellum, and the culmen of the anterior lobe of hypophysis, in the left hemisphere and Broadmann area 13 in the right hemisphere. In ischemic stroke subjects, a number of deactivated brain areas were enhanced, including Broadmann areas 6, 11,20, 22, 37, and 47, the culmen of the anterior lobe of hypophysis, alae lingulae cerebella, and the posterior lobe of the tonsil of cerebellum of the left hemisphere, and Broadmann areas 8, 37, 45 and 47, the culmen of the anterior lobe of hypophysis, pars tuberalis adenohypophyseos, inferior border of lentiform nucleus, lateral globus pallidus, inferior temporal gyrus, and the parahippocampal gyrus of the right hemisphere. These subjects also exhibited attenuation of a number of deactivated brain areas, including Broadmann area 7. These data suggest that acupuncture at Waiguan specifically alters brain function in regions associated with sensation, vision, and motion in ischemic stroke patients. By contrast, in normal individuals, acupuncture at Waiguan generally activates brain areas associated with insomnia and other functions.
文摘We conducted a systematic review of studies using non-invasive brain stimulation(NIBS: repetitive transcranial magnetic stimulation(r TMS) and transcranial direct current stimulation(t DCS)) as a research and clinical tool aimed at improving motor and functional recovery or spasticity in patients following spinal cord injury(SCI) under the assumption that if the residual corticospinal circuits could be stimulated appropriately, the changes might be accompanied by functional recovery or an improvement in spasticity. This review summarizes the literature on the changes induced by NIBS in the motor and functional recovery and spasticity control of the upper and lower extremities following SCI.