To evaluate the software behavior of the electronic control unit (ECU) of automotive electrical parking brake (EPB), a software- in-the-loop (SiL) simulation system is built. The EPB is simulated by ARX (auto-r...To evaluate the software behavior of the electronic control unit (ECU) of automotive electrical parking brake (EPB), a software- in-the-loop (SiL) simulation system is built. The EPB is simulated by ARX (auto-regressive with auxiliary input) model, ARMAX (auto-regressive moving average with auxiliary input) model, and NNARMAX (neural network ARMAX) model. By system identification, the ARX(3,4,2), ARX(4,4,2), ARMAX(3,3,1,1), and ARMAX(4,4,3,2) models are derived. Validation results show that the four-order ARMAX model and the NNARMAX model better simulate the actuator of the EPB.展开更多
This paper presents the model of one-tire kinetics、tires、the braking system and the model of control system.On virtual road,this paper builds a fuzzy predictive control system to insure the best attachment coefficie...This paper presents the model of one-tire kinetics、tires、the braking system and the model of control system.On virtual road,this paper builds a fuzzy predictive control system to insure the best attachment coefficient between tires and road. And it turns out to be that this fuzzy predictive control method has achieved good performances.展开更多
Based on the vehicle-road dynamic model, the road characteristic parameter, which depends on different types of road surfaces, is introduced and a new method of road surface identification for automotive anti-lock bra...Based on the vehicle-road dynamic model, the road characteristic parameter, which depends on different types of road surfaces, is introduced and a new method of road surface identification for automotive anti-lock braking system (ABS) is proposed. According to the characteristics of vehicle-road dynamic model, a simple math resolution method of the model's factors is established. Only using the information of wheel speed, the vehicle reference velocity and the wheel slip ratio are estimated real-timely. And based on the wheel dynamic model, the road characteristic parameter is determined to identify the road surface for the determination of thresholds of ABS regulative parameters. With this new method, the road surface identification can be accurately obtained and calculation time is short that it can meet the ABS real time control need, and it also improves the performance of ABS.展开更多
In asymmetric conditions,the movement and loads of left/right wheels or front/back wheels of the aircraft with multi-wheel or four-wheel bogie landing gears are inconsistent.There are few open literatures related to a...In asymmetric conditions,the movement and loads of left/right wheels or front/back wheels of the aircraft with multi-wheel or four-wheel bogie landing gears are inconsistent.There are few open literatures related to anti-skid braking system for multi-wheels due to technology blockade.In China,the research on multi-channel control and non-equilibrium regulation has just started,and the design of multi-channel control system for anti-skid braking,the simulation of asymmetry taxiing under braking are not studied.In this paper,a dynamics model of ground movement for aircraft with four-wheel bogie landing gears is established for braking simulation, considering the six-degree-of-freedom aircraft body and the movement of bogies and wheels.A multi-channel anti-skid braking system is designed for the wheels of the main landing gears with four-wheel bogies.The eight wheels on left and right landing gears are divided into four groups,and each group is controlled via one channel.The cross protection and self-locked protection modules are added between different channels.A multi-channel anti-skid braking system with slip-ratio control or with slip-velocity control is established separately.Based on the aircraft dynamics model,aircraft braking to stop with anti-skid control on dry runway and on wet runway are simulated.The simulation results demonstrate that in asymmetric conditions,added with cross protection and self-locked protection modules,the slip-ratio-controlled braking system can automatically regulate brake torque to avoid deep slipping and correct aircraft course.The proposed research has reference value for improving brake control effect on wet runway.展开更多
基金Sichuan Province Key Discipline Con-struction for Automotive Engineering ( No.SZD0410 )Research Foundation of Xihua University (No.R0620301)
文摘To evaluate the software behavior of the electronic control unit (ECU) of automotive electrical parking brake (EPB), a software- in-the-loop (SiL) simulation system is built. The EPB is simulated by ARX (auto-regressive with auxiliary input) model, ARMAX (auto-regressive moving average with auxiliary input) model, and NNARMAX (neural network ARMAX) model. By system identification, the ARX(3,4,2), ARX(4,4,2), ARMAX(3,3,1,1), and ARMAX(4,4,3,2) models are derived. Validation results show that the four-order ARMAX model and the NNARMAX model better simulate the actuator of the EPB.
文摘This paper presents the model of one-tire kinetics、tires、the braking system and the model of control system.On virtual road,this paper builds a fuzzy predictive control system to insure the best attachment coefficient between tires and road. And it turns out to be that this fuzzy predictive control method has achieved good performances.
文摘Based on the vehicle-road dynamic model, the road characteristic parameter, which depends on different types of road surfaces, is introduced and a new method of road surface identification for automotive anti-lock braking system (ABS) is proposed. According to the characteristics of vehicle-road dynamic model, a simple math resolution method of the model's factors is established. Only using the information of wheel speed, the vehicle reference velocity and the wheel slip ratio are estimated real-timely. And based on the wheel dynamic model, the road characteristic parameter is determined to identify the road surface for the determination of thresholds of ABS regulative parameters. With this new method, the road surface identification can be accurately obtained and calculation time is short that it can meet the ABS real time control need, and it also improves the performance of ABS.
基金supported by National Natural Science Foundation of China (Grant No.51075203)Nanjing University of Aeronautics and Astronautics Research Funding(Grant No.NS2010033)
文摘In asymmetric conditions,the movement and loads of left/right wheels or front/back wheels of the aircraft with multi-wheel or four-wheel bogie landing gears are inconsistent.There are few open literatures related to anti-skid braking system for multi-wheels due to technology blockade.In China,the research on multi-channel control and non-equilibrium regulation has just started,and the design of multi-channel control system for anti-skid braking,the simulation of asymmetry taxiing under braking are not studied.In this paper,a dynamics model of ground movement for aircraft with four-wheel bogie landing gears is established for braking simulation, considering the six-degree-of-freedom aircraft body and the movement of bogies and wheels.A multi-channel anti-skid braking system is designed for the wheels of the main landing gears with four-wheel bogies.The eight wheels on left and right landing gears are divided into four groups,and each group is controlled via one channel.The cross protection and self-locked protection modules are added between different channels.A multi-channel anti-skid braking system with slip-ratio control or with slip-velocity control is established separately.Based on the aircraft dynamics model,aircraft braking to stop with anti-skid control on dry runway and on wet runway are simulated.The simulation results demonstrate that in asymmetric conditions,added with cross protection and self-locked protection modules,the slip-ratio-controlled braking system can automatically regulate brake torque to avoid deep slipping and correct aircraft course.The proposed research has reference value for improving brake control effect on wet runway.