期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Analysis of torque transmitting behavior and wheel slip prevention control during regenerative braking for high speed EMU trains 被引量:4
1
作者 Kun Xu Guo-Qing Xu Chun-Hua Zheng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期244-251,共8页
The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recover... The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recovery.There remain technical challenges mainly because of the nonlinear,uncertain,and varying features of wheel-rail contact conditions.This research analyzes the torque transmitting behavior during regenerative braking,and proposes a novel methodology to detect the wheel-rail adhesion stability.Then,applications to the wheel slip prevention during braking are investigated,and the optimal slip ratio control scheme is proposed,which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control.The proposed methodology achieves the optimal braking performancewithoutthewheel-railcontactinformation.Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology. 展开更多
关键词 High speed electric multiple unit(EMU) train Regenerative braking Wheel-rail adhesion Optimal slip ratio
下载PDF
Assessment of the curving performance of heavy haul trains under braking conditions 被引量:2
2
作者 Liangliang Yang Yu Kang +1 位作者 Shihui Luo Maohai Fu 《Journal of Modern Transportation》 2015年第3期169-175,共7页
To study the curving performance of trains, 1D and 3D dynamic models of trains were built using nu- merical methods. The 1D model was composed of 210 simple wagons, each allowed only longitudinal motion; whereas the 3... To study the curving performance of trains, 1D and 3D dynamic models of trains were built using nu- merical methods. The 1D model was composed of 210 simple wagons, each allowed only longitudinal motion; whereas the 3D model included three complicated wagons for which longitudinal, lateral, and vertical degrees of freedom were considered. Combined with the calculated results from the 1D model under braking conditions, the behavior of draft gears and brake shoes were added to the 3D model. The assessment of the curving performance of trains was focused on making comparisons between idling and braking conditions. The results indicated the following: when a train brakes on a curved track, the wheel-rail lateral force and derailment factor are greater than under idling conditions. Because the yawing movement of the wheelset is limited by brake shoes, the zone of wheel contact along the wheel tread is wider than under idling conditions. Furthermore, as the curvature becomes tighter, the traction ratio shows a nonlinear increasing trend, whether under idling or braking conditions. By increasing the brake shoe pressure, train steering becomes more difficult. 展开更多
关键词 Heavy haul train · Curving performance ·Draft gear · Brake shoe · Wheel-rail · Derailment safetyWheel wear power · Traction ratio
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部