Let(Z_(n))be a branching process with immigration in a random environmentξ,whereξis an independent and identically distributed sequence of random variables.We show asymptotic properties for all the moments of Z_(n) ...Let(Z_(n))be a branching process with immigration in a random environmentξ,whereξis an independent and identically distributed sequence of random variables.We show asymptotic properties for all the moments of Z_(n) and describe the decay rates of the n-step transition probabilities.As applications,a large deviation principle for the sequence log Z_(n) is established,and related large deviations are also studied.展开更多
We are interested in the convergence rates of the submartingale Wn=Z_(n)/Π_(n)to its limit W,where(Π_(n))is the usually used norming sequence and(Z_(n))is a supercritical branching process with immigration(Y_(n))in ...We are interested in the convergence rates of the submartingale Wn=Z_(n)/Π_(n)to its limit W,where(Π_(n))is the usually used norming sequence and(Z_(n))is a supercritical branching process with immigration(Y_(n))in a stationary and ergodic environmentξ.Under suitable conditions,we establish the following central limit theorems and results about the rates of convergence in probability or in law:(i)W-W_(n) with suitable normalization converges to the normal law N(0,1),and similar results also hold for W_(n+k)-W_(n) for each fixed k∈N^(*);(ii)for a branching process with immigration in a finite state random environment,if W_(1) has a finite exponential moment,then so does W,and the decay rate of P(|W-W_(n)|>ε)is supergeometric;(iii)there are normalizing constants an(ξ)(that we calculate explicitly)such that a_(n)(ξ)(W-W_(n))converges in law to a mixture of the Gaussian law.展开更多
In this paper, we investigate Galton-Watson branching processes in random environments. In the case where the environmental process is a Markov chain which is positive recurrent or has a transition matrix Q (θ,α) su...In this paper, we investigate Galton-Watson branching processes in random environments. In the case where the environmental process is a Markov chain which is positive recurrent or has a transition matrix Q (θ,α) such that sup_θ Q (θ,α)> 0 for some α, we prove that the model has the asymptotic behavior being similar to that of Galton-Watson branching processes. In other case where the environments are non-stationary independent, the sufficient conditions are obtained for certain extinction and uncertain extinction for the model.展开更多
Under a very general condition (TNC condition) we show that the spectral radius of the kernel of a general branching process is a threshold parameter and hence plays a role as the basic reproduction number in usual ...Under a very general condition (TNC condition) we show that the spectral radius of the kernel of a general branching process is a threshold parameter and hence plays a role as the basic reproduction number in usual CMJ processes. We discuss also some properties of the extinction probability and the generating operator of general branching processes. As an application in epidemics, in the final section we suggest a generalization of SIR model which can describe infectious diseases transmission in an inhomogeneous population.展开更多
In this article the supercritical bisexual Galton-Watson branching processes with the immigration of mating units is considered. A necessary condition for the almost sure convergence, and a sufficient condition for th...In this article the supercritical bisexual Galton-Watson branching processes with the immigration of mating units is considered. A necessary condition for the almost sure convergence, and a sufficient condition for the L^1 convergence are given for the process with the suitably normed condition.展开更多
A continuous time and mixed state branching process is constructed by a scaling limit theorem of two-type Galton-Watson processes.The process can also be obtained by the pathwise unique solution to a stochastic equati...A continuous time and mixed state branching process is constructed by a scaling limit theorem of two-type Galton-Watson processes.The process can also be obtained by the pathwise unique solution to a stochastic equation system.From the stochastic equation system we derive the distribution of local jumps and give the exponential ergodicity in Wasserstein-type distances of the transition semigroup.Meanwhile,we study immigration structures associated with the process and prove the existence of the stationary distribution of the process with immigration.展开更多
For continuous-state branching processes in Lévy random environments, the recursion of n-moments and the equivalent condition for the existence of general f-moments are established, where f is a positive continuo...For continuous-state branching processes in Lévy random environments, the recursion of n-moments and the equivalent condition for the existence of general f-moments are established, where f is a positive continuous function satisfying some standard conditions.展开更多
This article deals with some properties of Galton-Watson branching processes in varying environments. A necessary and suffcient condition for relative recurrent state is presented, and a series of ratio limit properti...This article deals with some properties of Galton-Watson branching processes in varying environments. A necessary and suffcient condition for relative recurrent state is presented, and a series of ratio limit properties of the transition probabilities are showed.展开更多
It is well known that Fleming-Viot superprocesses can be obtained from the Dawson-Watanabe superprocesses by conditioning the latter to have constant total mass. The same question is investigated for measure-valued br...It is well known that Fleming-Viot superprocesses can be obtained from the Dawson-Watanabe superprocesses by conditioning the latter to have constant total mass. The same question is investigated for measure-valued branching processes with interacting intensity independent of the geographical position. It is showed that a sequence of conditioned probability laws of this kind of interacting measure-valued branching processes also approximates to the probability law of Fleming-Viot superprocesses.展开更多
The spectral radiuses of Galton-Watson branching processes which describes the speed of the process escaping from any state are calculated. Under the condition of irreducibility,it is show that this is equal to the sp...The spectral radiuses of Galton-Watson branching processes which describes the speed of the process escaping from any state are calculated. Under the condition of irreducibility,it is show that this is equal to the spectral radius of Jacobi matrix of its generating function.展开更多
It is well known that a supercritical single-type Bienayme-Galton-Watson process can be viewed as a decomposable branching process formed by two subtypes of particles: those having infinite line of descent and those w...It is well known that a supercritical single-type Bienayme-Galton-Watson process can be viewed as a decomposable branching process formed by two subtypes of particles: those having infinite line of descent and those who have finite number of descendants. In this paper we analyze such a decomposition for the linear-fractional Bienayme-Galton-Watson processes with countably many types. We find explicit expressions for the main characteristics of the reproduction laws for so-called skeleton and doomed particles.展开更多
Studying the propagation of cascading failures through the transmission network is key to asses and mitigate the risk faced the energy system. As complex systems the power grid failure is often studied using some prob...Studying the propagation of cascading failures through the transmission network is key to asses and mitigate the risk faced the energy system. As complex systems the power grid failure is often studied using some probability distributions. We apply 4 well-known probabilistic models, Poisson model, Power Law model, Generalized Poisson Branching process model and Borel-Tanner Branching process model, to a 14-year utility historical outage data from a regional power grid in China, computing probabilities of cascading line outages. For this data, the empirical distribution of the total number of line outages is well approximated by the initial line outages propagating according to a Borel-Tanner branching process. Also for this data, Power law model overestimates, while Generalized Possion branching process and Possion model underestimate, the probability of larger outages. Especially, the probability distribution generated by the Poisson model deviates heavily from the observed data, underestimating the probability of large events (total no. of outages over 5) by roughly a factor of 10-2 to 10-5. The observation is confirmed by a statistical test of model fitness. The results of this work indicate that further testing of Borel-Tanner branching process models of cascading failure is appropriate, and should be further discussed as it outperforms other more traditional models.展开更多
The distributional properties of a multi-dimensional continuous-state branching process are determined by its cumulant semigroup,which is defined by the backward differential equation.We provide a proof of the asserti...The distributional properties of a multi-dimensional continuous-state branching process are determined by its cumulant semigroup,which is defined by the backward differential equation.We provide a proof of the assertion of Rhyzhov and Skorokhod(Theory Probab.Appl.,1970)on the uniqueness of the solutions to the equation,which is based on a characterization of the process as the pathwise unique solution to a system of stochastic equations.展开更多
By generalizing a criterion of Mufa Chen for Markov jump processes,we establish the necessary and sufficient conditions for the extinction,explosion and coming down from infinity of a continuous-state nonlinear Neveu...By generalizing a criterion of Mufa Chen for Markov jump processes,we establish the necessary and sufficient conditions for the extinction,explosion and coming down from infinity of a continuous-state nonlinear Neveu’s branching process.展开更多
Let(Zn)be a supercritical branching process with immigration in an independent and identically distributed random environment.Under necessary moment conditions,we show the exact convergence rate in the central limit t...Let(Zn)be a supercritical branching process with immigration in an independent and identically distributed random environment.Under necessary moment conditions,we show the exact convergence rate in the central limit theorem on log Zn and establish the corresponding local limit theorem by using the moments of the natural submartingale and the convergence rates of its logarithm.By similar approach and with the help of a change of measure,we also present the so-called integrolocal theorem and integral large deviation theorem to characterize the precise asymptotics of the upper large deviations.展开更多
In this article, we develop and analyze a continuous-time Markov chain (CTMC) model to study the resurgence of dengue. We also explore the large population asymptotic behavior of probabilistic model of dengue using th...In this article, we develop and analyze a continuous-time Markov chain (CTMC) model to study the resurgence of dengue. We also explore the large population asymptotic behavior of probabilistic model of dengue using the law of large numbers (LLN). Initially, we calculate and estimate the probabilities of dengue extinction and major outbreak occurrence using multi-type Galton-Watson branching processes. Subsequently, we apply the LLN to examine the convergence of the stochastic model towards the deterministic model. Finally, theoretical numerical simulations are conducted exploration to validate our findings. Under identical conditions, our numerical results demonstrate that dengue could vanish in the stochastic model while persisting in the deterministic model. The highlighting of the law of large numbers through numerical simulations indicates from what population size a deterministic model should be considered preferable.展开更多
基金partially supported by the National Nature Science Foundation of China(11601286,11501146)。
文摘Let(Z_(n))be a branching process with immigration in a random environmentξ,whereξis an independent and identically distributed sequence of random variables.We show asymptotic properties for all the moments of Z_(n) and describe the decay rates of the n-step transition probabilities.As applications,a large deviation principle for the sequence log Z_(n) is established,and related large deviations are also studied.
基金supported by the National Natural Science Foundation of China(11571052,11731012)the Hunan Provincial Natural Science Foundation of China(2018JJ2417)the Open Fund of Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering(2018MMAEZD02)。
文摘We are interested in the convergence rates of the submartingale Wn=Z_(n)/Π_(n)to its limit W,where(Π_(n))is the usually used norming sequence and(Z_(n))is a supercritical branching process with immigration(Y_(n))in a stationary and ergodic environmentξ.Under suitable conditions,we establish the following central limit theorems and results about the rates of convergence in probability or in law:(i)W-W_(n) with suitable normalization converges to the normal law N(0,1),and similar results also hold for W_(n+k)-W_(n) for each fixed k∈N^(*);(ii)for a branching process with immigration in a finite state random environment,if W_(1) has a finite exponential moment,then so does W,and the decay rate of P(|W-W_(n)|>ε)is supergeometric;(iii)there are normalizing constants an(ξ)(that we calculate explicitly)such that a_(n)(ξ)(W-W_(n))converges in law to a mixture of the Gaussian law.
文摘In this paper, we investigate Galton-Watson branching processes in random environments. In the case where the environmental process is a Markov chain which is positive recurrent or has a transition matrix Q (θ,α) such that sup_θ Q (θ,α)> 0 for some α, we prove that the model has the asymptotic behavior being similar to that of Galton-Watson branching processes. In other case where the environments are non-stationary independent, the sufficient conditions are obtained for certain extinction and uncertain extinction for the model.
文摘Under a very general condition (TNC condition) we show that the spectral radius of the kernel of a general branching process is a threshold parameter and hence plays a role as the basic reproduction number in usual CMJ processes. We discuss also some properties of the extinction probability and the generating operator of general branching processes. As an application in epidemics, in the final section we suggest a generalization of SIR model which can describe infectious diseases transmission in an inhomogeneous population.
文摘In this article the supercritical bisexual Galton-Watson branching processes with the immigration of mating units is considered. A necessary condition for the almost sure convergence, and a sufficient condition for the L^1 convergence are given for the process with the suitably normed condition.
基金supported by the National Key R&D Program of China(2020YFA0712900)the National Natural Science Foundation of China(11531001).
文摘A continuous time and mixed state branching process is constructed by a scaling limit theorem of two-type Galton-Watson processes.The process can also be obtained by the pathwise unique solution to a stochastic equation system.From the stochastic equation system we derive the distribution of local jumps and give the exponential ergodicity in Wasserstein-type distances of the transition semigroup.Meanwhile,we study immigration structures associated with the process and prove the existence of the stationary distribution of the process with immigration.
基金supported by the National Natural Science Foundation of China(11531001)
文摘For continuous-state branching processes in Lévy random environments, the recursion of n-moments and the equivalent condition for the existence of general f-moments are established, where f is a positive continuous function satisfying some standard conditions.
基金supported by NNSF of China(6053408070571079)Open Fundation of SKLSE of Wuhan University (2008-07-03)
文摘This article deals with some properties of Galton-Watson branching processes in varying environments. A necessary and suffcient condition for relative recurrent state is presented, and a series of ratio limit properties of the transition probabilities are showed.
文摘It is well known that Fleming-Viot superprocesses can be obtained from the Dawson-Watanabe superprocesses by conditioning the latter to have constant total mass. The same question is investigated for measure-valued branching processes with interacting intensity independent of the geographical position. It is showed that a sequence of conditioned probability laws of this kind of interacting measure-valued branching processes also approximates to the probability law of Fleming-Viot superprocesses.
文摘The spectral radiuses of Galton-Watson branching processes which describes the speed of the process escaping from any state are calculated. Under the condition of irreducibility,it is show that this is equal to the spectral radius of Jacobi matrix of its generating function.
文摘It is well known that a supercritical single-type Bienayme-Galton-Watson process can be viewed as a decomposable branching process formed by two subtypes of particles: those having infinite line of descent and those who have finite number of descendants. In this paper we analyze such a decomposition for the linear-fractional Bienayme-Galton-Watson processes with countably many types. We find explicit expressions for the main characteristics of the reproduction laws for so-called skeleton and doomed particles.
文摘Studying the propagation of cascading failures through the transmission network is key to asses and mitigate the risk faced the energy system. As complex systems the power grid failure is often studied using some probability distributions. We apply 4 well-known probabilistic models, Poisson model, Power Law model, Generalized Poisson Branching process model and Borel-Tanner Branching process model, to a 14-year utility historical outage data from a regional power grid in China, computing probabilities of cascading line outages. For this data, the empirical distribution of the total number of line outages is well approximated by the initial line outages propagating according to a Borel-Tanner branching process. Also for this data, Power law model overestimates, while Generalized Possion branching process and Possion model underestimate, the probability of larger outages. Especially, the probability distribution generated by the Poisson model deviates heavily from the observed data, underestimating the probability of large events (total no. of outages over 5) by roughly a factor of 10-2 to 10-5. The observation is confirmed by a statistical test of model fitness. The results of this work indicate that further testing of Borel-Tanner branching process models of cascading failure is appropriate, and should be further discussed as it outperforms other more traditional models.
基金supported by the National Key R&D Program of China(Grant No.2020YFA0712900)the National Natural Science Foundation of China(Grant No.12271029)。
文摘The distributional properties of a multi-dimensional continuous-state branching process are determined by its cumulant semigroup,which is defined by the backward differential equation.We provide a proof of the assertion of Rhyzhov and Skorokhod(Theory Probab.Appl.,1970)on the uniqueness of the solutions to the equation,which is based on a characterization of the process as the pathwise unique solution to a system of stochastic equations.
基金Supported by NSFC(Grant No.12061004)NSF of Ningxia(Grant No.2021AAC02018)+2 种基金the Fundamental Research Funds for the Central Universities,North Minzu University(Grant No.2020KYQD17)Major research project for North Minzu University(Grant No.ZDZX201902)the Construction Project of First-Class Disciplines in Ningxia Higher Education(Grant No.NXYLXK2017B09)。
文摘By generalizing a criterion of Mufa Chen for Markov jump processes,we establish the necessary and sufficient conditions for the extinction,explosion and coming down from infinity of a continuous-state nonlinear Neveu’s branching process.
基金Supported by Shandong Provincial Natural Science Foundation(Grant No.ZR2021MA085)National Natural Science Foundation of China(Grant No.11971063)。
文摘Let(Zn)be a supercritical branching process with immigration in an independent and identically distributed random environment.Under necessary moment conditions,we show the exact convergence rate in the central limit theorem on log Zn and establish the corresponding local limit theorem by using the moments of the natural submartingale and the convergence rates of its logarithm.By similar approach and with the help of a change of measure,we also present the so-called integrolocal theorem and integral large deviation theorem to characterize the precise asymptotics of the upper large deviations.
文摘In this article, we develop and analyze a continuous-time Markov chain (CTMC) model to study the resurgence of dengue. We also explore the large population asymptotic behavior of probabilistic model of dengue using the law of large numbers (LLN). Initially, we calculate and estimate the probabilities of dengue extinction and major outbreak occurrence using multi-type Galton-Watson branching processes. Subsequently, we apply the LLN to examine the convergence of the stochastic model towards the deterministic model. Finally, theoretical numerical simulations are conducted exploration to validate our findings. Under identical conditions, our numerical results demonstrate that dengue could vanish in the stochastic model while persisting in the deterministic model. The highlighting of the law of large numbers through numerical simulations indicates from what population size a deterministic model should be considered preferable.