A field trial was conducted to evaluate the reduction of bioavailability of heavy metals including lead (Pb), zinc (Zn) and cadmium (Cd) in a soil contaminated by mining tailings in Shaoxing, Zhejiang, China. Three co...A field trial was conducted to evaluate the reduction of bioavailability of heavy metals including lead (Pb), zinc (Zn) and cadmium (Cd) in a soil contaminated by mining tailings in Shaoxing, Zhejiang, China. Three commercial phosphate (P) fertilizers including phosphate rock (PR), calcium magnesium phosphate (CMP), and single superphosphate (SSP) were applied to the plot at three P application rates, 50, 300, and 500 g/m2 with 9 treatments and control (CK). Plants, water soluble and exchangeable (WE) extra...展开更多
Organic amendment is a promising,in situ phytostabilization approach to alleviate the phytotoxic effects of heavy metal contaminated soils.The aim of this study was to evaluate the feasibility of cow manure(CM)and i...Organic amendment is a promising,in situ phytostabilization approach to alleviate the phytotoxic effects of heavy metal contaminated soils.The aim of this study was to evaluate the feasibility of cow manure(CM)and its derived biochar(CMB)as a soil amendment on cadmium(Cd)availability and accumulation in low and high Cd-accumulating cultivars of Brassica chinensis L.grown in an acidic red soil.CM and CMB were applied to Cd-contaminated acidic red soil at the rates of 0,3.0and 6.0%(w/w).Application of CMB was significantly more effective than that of CM,as it reduced the availability of Cd in soil by 34.3–69.9%and its bioaccumulation in the low Cd accumulator,Aijiaoheiye 333,by 51.2 and 67.4%,respectively.The addition of CMB significantly increased the extractability and accumulation of trace metals(Zn,Mn,Fe,and Cu)by plants and improved plant biomass production.CMB application,combined with utilizing low Cd accumulating cultivars represents a new,sustainable strategy to alleviate the toxic effects on Cd and improve food safety.展开更多
Subcellular distributions and chemical forms of cadmium (Cd) in the leaves, stems and roots were investigated in low-Cd accumulation cultivars and high-Cd accumulation cultivars ofpakchoi (Brassica chinensis L.). ...Subcellular distributions and chemical forms of cadmium (Cd) in the leaves, stems and roots were investigated in low-Cd accumulation cultivars and high-Cd accumulation cultivars ofpakchoi (Brassica chinensis L.). Root cell wall played a key role in limiting soil Cd from entering the protoplast, especially in the low-Cd cultivars. The high-Cd cultivars had significantly higher leaf and stem Cd concentrations than the low-Cd cultivars in cell wall fraction, chloroplast/trophoplast fraction, organelle fraction and soluble fraction. In low-Cd cultivars, which were more sensitive and thus had greater physiological needs of Cd detoxification than high-Cd cultivars, leaf vacuole sequestrated higher proportions of Cd. Cd in the form of pectate/protein complexes (extracted by 1 tool. L~ NaC1) played a decisive role in Cd translocation from root to shoot, which might be one of the mechanisms that led to the differences in shoot Cd accumulation between the two types of cultivars. Furthermore, the formation of Cd- phosphate complexes (extracted by 2% HAc) was also involved in Cd detoxification within the roots of pakchoi under high Cd stress, suggesting that the mechanisms of Cd detoxification might be different between low- and high-Cd cultivars.展开更多
[Objective] The aim was to study the properties of novel "light fertilizer", photo-conversion film, in order to evaluate its effect on the environmental factors and morphogenetic process of crops in the high tunnel....[Objective] The aim was to study the properties of novel "light fertilizer", photo-conversion film, in order to evaluate its effect on the environmental factors and morphogenetic process of crops in the high tunnel. [Method] Photo-conversion film and Iongevous anti-dropping film were compared in terms of light, air and soil temperature utilizing the Facilities of leafy agriculture high tunnel intelligent monitoring system. Verifying the results by farmland experiment. [Result] Photo- conversion film indeed improved the light quality of high tunnel compared with the Iongevous anti- dripping film. The air and soil temperature was raised several degrees. Results of farmland experiment show that the average value of brassica chinensis fresh weight increased 19.15% compared to the control. [Conclusion] Photo-conversion film promotes more crop growth than Iongevous anti-dropping film due to improvement of light quality, air and soil temperature.展开更多
Brassica chinensis L. were foliarly applied with glycinebetaine (GB), as this species is unable to synthesis GB and sensitive to osmotic stress such as salt. The exogenous GB was easily absorbed and transported by t...Brassica chinensis L. were foliarly applied with glycinebetaine (GB), as this species is unable to synthesis GB and sensitive to osmotic stress such as salt. The exogenous GB was easily absorbed and transported by the leaf of B. chinensis . Its application (0-20 mmol/L) enhanced the plant tolerance to salt stress. The treatment of 15 mmol/L GB significantly decreased the Na + accumulation in leaf and root under NaCl stress. This difference in accumulating Na + and K + is caused by higher selectivity of root absorption. Furthermore, GB increased H +_ATPase activity of root plasma membrane evidently. This result strongly suggested that in root the decreased Na + accumulation was caused by the GB accumulation that enhanced the extrusion of Na + from the cell in some way through plasma membrane transporter, e.g. Na +/H + antiport driven by H +_ATPase. The GB application was also found to stabilize the plasma membrane, to decrease the loss of chlorophyll, and to stimulate the osmosis induced proline response under salt stress.展开更多
Brassica campestris ssp. chinensis, also known as non-heading Chinese cabbage, is an important vegetable widely distributed in southern China. High temperature is the most common adversity factor in vegetable producti...Brassica campestris ssp. chinensis, also known as non-heading Chinese cabbage, is an important vegetable widely distributed in southern China. High temperature is the most common adversity factor in vegetable production, because Brassica campestris ssp. chinensis is a thermophilic vegetable, which can't well grow at high temperature. In summer and autumn, high temperature stress would prevent Brassica campestris ssp. chinensis from growing and result in poor quality of its seedlings, seriously influencing yield and quality of the vegetable in later period. In this paper, present situation and latest advances in heat resistance research of Brassica campestris ssp. chinensis in recent years were reviewed at home and abroad. The research tendency in Bassica campestris ssp. chinensis was also described, providing reference for breeding of heat-resistant Brassica campestris ssp. chinensis.展开更多
[Objective] The purpose of this study is to determine the effects of com-bined use of boron and manganese fertilizers on the nutritional quality and physio-logical indices of Brassica campestris. [Method] In the nutri...[Objective] The purpose of this study is to determine the effects of com-bined use of boron and manganese fertilizers on the nutritional quality and physio-logical indices of Brassica campestris. [Method] In the nutrient solutions for growing B. campestris by hydroponics, boric acid and manganese sulfate were added at 0.5, 2.5, and 7.5 mg/L respectively. Another treatment without boron and manganese was prepared as the control. Quality and physiological indices of B. campestris in the 10 treatments were measured. [Result] Boron and manganese shared obvious in-teraction in improving the quality and physiological indices of B. campestris. To cul-tivate B. campestris with high quality and strong resistance, the optimum concentra-tions of boron and manganese in the nutrient solution should be 2.5 mg/L boric acid and 2.5-7.5 mg/L manganese sulfate. [Conclusion] The findings wil provide refer-ence for studying effects of trace elements on nutrient composition of vegetables.展开更多
Objective] This study was conducted to investigate the genetic inheritance of clubroot resistance in Chinese non-heading cabbage (Brassica campestris ssp. chinensis). [Method] The clubroot resistance gene was introd...Objective] This study was conducted to investigate the genetic inheritance of clubroot resistance in Chinese non-heading cabbage (Brassica campestris ssp. chinensis). [Method] The clubroot resistance gene was introduced from a Brassica campestris ssp. pekinensis cultivar to non-heading Chinese cabbage, and the inheri-tance and molecular markers of clubroot resistance gene in parental lines, F1, F2 and BC1 of non-heading Chinese cabbage were studied through pathogen inoculation at seedling stage and ISSR-PCR. [Result] Clubroot resistance in non-heading Chi-nese cabbage was control ed by a single dominant gene. ISSR molecular markers with Bulk segregant analysis (BSA) found that primer-873 was linked to resistance gene, named CR-873, and the genetic distance between the marker and the resis-tance gene was 9.72 cM. [Conclusion] The results provide references for the molecular marker assisted breeding of non-heading Chinese cabbage.展开更多
The influence of nitrification inhibitor(NI) 3,4 dimethylpyrazole phosphate(DMPP) on nitrate accumulation in greengrocery( Brassica campestris L. ssp. chinensis ) and vegetable soil at surface layer were investigated ...The influence of nitrification inhibitor(NI) 3,4 dimethylpyrazole phosphate(DMPP) on nitrate accumulation in greengrocery( Brassica campestris L. ssp. chinensis ) and vegetable soil at surface layer were investigated in field experiments in 2002 and 2003 Results showed that NI DMPP took no significant effect on yields of edible parts of greengrocery, but it could significantly decrease NO - 3 N concentration in greengrocery and in vegetable soil at surface layer. In addition, NI DMPP could reduce the NO - 3 N concentration during the prophase stage of storage.展开更多
Glucosinolates (GSs) are a group of plant secondary metabolites containing abundant nitrogen (N) and sulfur (S) mainly in Brassica and have the beneficial effects on human health including anti-carcinogenic, cho...Glucosinolates (GSs) are a group of plant secondary metabolites containing abundant nitrogen (N) and sulfur (S) mainly in Brassica and have the beneficial effects on human health including anti-carcinogenic, cholesterol-reducing and other pharmacological effects. The objective of this study was to investigate the effect of different concentrations of N (5, 10, and 20 mmol L-a, denoted by N5, N10 and N20) and S (0,5, 1, and 2 mmol L^-1, denoted by S0.5, S1 and S2) on the yield and GSs in pakchoi (Brassica campestris L. ssp. chinensis var. communis) in hydroponics. Results showed that N10 and N20 significantly enhanced the yield compared with N5, however, N20 had a negative effect relative to N10. Only with N10 and N20 low S supply (S0.5) reduced the yield. The concentrations of aliphatic GSs, aromatic GS and total GSs were enhanced by N5 and indolyl GSs were enhanced by N20. S2 enhanced the concentration of individual GS and total GSs. The concentrations of indolyl GSs were maximized in N20S2 treatment, whereas the highest concentrations of aliphatic GSs, aromatic GS and total GSs were found in N5S2 treatment. Effects of N and S on aliphatic GSs were higher than on indolyl GSs. The results suggest that the accumulation of aliphatic GSs and aromatic GS could be enhanced by low N and high S and restricted by high N while that of indolyl GSs could be enhanced by high N and high S.展开更多
Brassica chinensis L. was chosen and exposed to different concentrations of Cd exposure to evaluate its Cd-accumulating capacity and its potential cellular defensive mechanisms. Cd accumulation in the shoots and roots...Brassica chinensis L. was chosen and exposed to different concentrations of Cd exposure to evaluate its Cd-accumulating capacity and its potential cellular defensive mechanisms. Cd accumulation in the shoots and roots of B. chinensis was up to 1348.3±461.8 and 3761.0±795.0 mg per killogram of dry weight, respectively, under 200 μmol/L of Cd exposure. Increasing Cd accumulation in the plant was accompanied by rapid accumulation of phytochelatins (PCs), and the sequestration of Cd by PCs provided a primary cellular mechanism for Cd detoxification and tolerance of B. chinensis. Furthermore, malondialdehyde formation, hydrogen peroxide content and antioxidative enzyme activities such as superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase were observed in the shoots of Cd-stressed B. chinensis. Increasing enzyme activities in response to concentrations of 5 to 50 μmol/L Cd showed an efficient defense against oxidative stress, suggesting that the antioxidative system was a secondary defensive mechanism. These resulted in reduced free Cd damage and enhanced Cd accumulation and tolerance. Glutathione plays a pivotal role in these two detoxification pathways. In general, these results suggested that PCs and the antioxidative system are synergistic in combatting Cd-induced oxidative stress and that they play important roles in Cd detoxification of B. chinensis, and also give a deep understanding of the natural defensive mechanisms in plants under heavy metal stress.展开更多
To determine differential expression of genie male sterility A/B lines in Chinese cabbage-pak-choi (Brassica campestris ssp. chinensis Makino var. communis Tsen et Lee), we used the RNA fingerprinting technique, cDNA-...To determine differential expression of genie male sterility A/B lines in Chinese cabbage-pak-choi (Brassica campestris ssp. chinensis Makino var. communis Tsen et Lee), we used the RNA fingerprinting technique, cDNA-AFLP analysis, in different developmental stages and different tissues. While no obvious differential expressions were observed in rosette leaves, florescence leaves, and scapes, some differential expressions were found in alabstrums of A/B lines and among leaves, scapes and alabstrums. We analyzed the al-abstrums collected in different developmental stages with 10 primer combinations. We got a unique band between middle size alabstrums and large alabstrums in B line in one of the ten pair primers, and in another one pair, one band reflecting a higher gene-expression level in A line than that in B line was obtained. No unique bands were found with the other primer combinations. The bands reflecting different gene-expression level were confirmed by Northern hybridization. The results indicated that cDNA-AFLP was a suitable tool for studying differential expression of genie male sterility in plants. SDS-polyacrylamide gel electrophoresis patterns of soluble proteins further verified the difference in A/B lines.展开更多
The study analyzed the silencing of BcMF12 gene regulated by BcA9 promoter in the transgenic pakchoi and confirmed the effect of antisense BcMF12 gene on the pollen development. A conserved BcMF12 gene fragment was am...The study analyzed the silencing of BcMF12 gene regulated by BcA9 promoter in the transgenic pakchoi and confirmed the effect of antisense BcMF12 gene on the pollen development. A conserved BcMF12 gene fragment was amplified from the cDNA of flower buds in pakchoi (Brassica campestris L. ssp. chinensis, syn. B. rapa L. ssp. chinensis) and was fused to the anther specific BcA9 promoter. The plant antisense expression vector was constructed and then introduced into pakchoi via Agrobacterium-mediated transformation. The transgenic plants were screened by antibiotics and molecular analysis. PCR and Southern blot revealed that the antisense BcMF12-GUS fusion gene regulated by BcA9 promoter was integrated into transgenic plants. Northern blot suggested that the expression of BcMF12 gene was down-regulated significantly. The pollen germination rate of transgenic plants with antisense BcMF12 gene decreased as compared with that of the control plants. The expression of the gene BcMF12 related to the pollen development was inhibited by the antisense BcMF12 driven by BcA9 promoter, which consequently affected the pollen development in pakchoi.展开更多
Inflorescence architecture is determined by inflorescence length,branch angles and the density of siliques,which affects planting density,lodging resistance and mechanical operation in rapeseed.However,the molecular m...Inflorescence architecture is determined by inflorescence length,branch angles and the density of siliques,which affects planting density,lodging resistance and mechanical operation in rapeseed.However,the molecular mechanisms controlling inflorescence architecture are poorly understood,restricting the progress of breeding varieties with ideal plant architecture in oilseed rape.In this study,we have identified and characterized a rapeseed inflorescence development mutant,reduced inflorescence length(ril),which exhibits determinate and shortened inflorescences,reduced plant height,compact branches,and increased silique density.Through BSA-seq and map-based cloning,we find that RIL encodes a cyclic nucleotide-gated channel 20(BnaA01.CNGC20).A substitution of proline at the 304th position to leucine(P304L)was identified in the conserved transmembrane domain of BnaA01.CNGC20.This P304L substitution neither affects the subcellular localization and self-assembly of BnaA01.CNGC20,nor disrupts the interactions with BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1(BAK1),which interacts with CNGC20 and phosphorylates it to regulate Ca^(2+)channel stability.However,the P304L substitution increases channel activity and Ca^(2+)influx,which in turn induces immune responses such as cell death,H2O2 accumulation,upregulation of pathogenesis-related genes,and pattern-triggered immunity.The enhanced immunity improves the resistance to Leptosphaeria biglobosa and Sclerotinia sclerotiorum.Transcriptome analysis further revealed that CNGC20 plays dual roles in regulating plant growth and immunity via the brassinosteroid and auxin signaling pathways.The findings in this study provide deeper insights into the intricate relationship between cytosolic Ca^(2+)level and plant development and immunity,as well as the trade-off between immunity and the performance of yield-related traits in the heterozygous plants(+/ril),which may serve as a guide for balancing yield and disease resistance in oilseed rape breeding.展开更多
基金the National Natural Sci-ence Foundation of China (No. 40771100, 40432004)
文摘A field trial was conducted to evaluate the reduction of bioavailability of heavy metals including lead (Pb), zinc (Zn) and cadmium (Cd) in a soil contaminated by mining tailings in Shaoxing, Zhejiang, China. Three commercial phosphate (P) fertilizers including phosphate rock (PR), calcium magnesium phosphate (CMP), and single superphosphate (SSP) were applied to the plot at three P application rates, 50, 300, and 500 g/m2 with 9 treatments and control (CK). Plants, water soluble and exchangeable (WE) extra...
基金financially supported by Ministry of Science and Technology of China (2012AA100405)Zhejiang University Innovative Research Funds, China (2015FZA6008)
文摘Organic amendment is a promising,in situ phytostabilization approach to alleviate the phytotoxic effects of heavy metal contaminated soils.The aim of this study was to evaluate the feasibility of cow manure(CM)and its derived biochar(CMB)as a soil amendment on cadmium(Cd)availability and accumulation in low and high Cd-accumulating cultivars of Brassica chinensis L.grown in an acidic red soil.CM and CMB were applied to Cd-contaminated acidic red soil at the rates of 0,3.0and 6.0%(w/w).Application of CMB was significantly more effective than that of CM,as it reduced the availability of Cd in soil by 34.3–69.9%and its bioaccumulation in the low Cd accumulator,Aijiaoheiye 333,by 51.2 and 67.4%,respectively.The addition of CMB significantly increased the extractability and accumulation of trace metals(Zn,Mn,Fe,and Cu)by plants and improved plant biomass production.CMB application,combined with utilizing low Cd accumulating cultivars represents a new,sustainable strategy to alleviate the toxic effects on Cd and improve food safety.
文摘Subcellular distributions and chemical forms of cadmium (Cd) in the leaves, stems and roots were investigated in low-Cd accumulation cultivars and high-Cd accumulation cultivars ofpakchoi (Brassica chinensis L.). Root cell wall played a key role in limiting soil Cd from entering the protoplast, especially in the low-Cd cultivars. The high-Cd cultivars had significantly higher leaf and stem Cd concentrations than the low-Cd cultivars in cell wall fraction, chloroplast/trophoplast fraction, organelle fraction and soluble fraction. In low-Cd cultivars, which were more sensitive and thus had greater physiological needs of Cd detoxification than high-Cd cultivars, leaf vacuole sequestrated higher proportions of Cd. Cd in the form of pectate/protein complexes (extracted by 1 tool. L~ NaC1) played a decisive role in Cd translocation from root to shoot, which might be one of the mechanisms that led to the differences in shoot Cd accumulation between the two types of cultivars. Furthermore, the formation of Cd- phosphate complexes (extracted by 2% HAc) was also involved in Cd detoxification within the roots of pakchoi under high Cd stress, suggesting that the mechanisms of Cd detoxification might be different between low- and high-Cd cultivars.
基金Supported by Jiangsu Agricultural Science and Technology Self-Innovation Funds(CX(13)3032)Nanjing Leading Science and Technology Innovative Talents and Entrepreneurs(2012-NJ-321)+4 种基金Jiangsu"Six Businesses Talents Peak"Program(2012NY-031)Nanjing Innovation Fund for Technology Based Firms(2013/074)New & High Technology Industry Development Project of Institutions of Higher Education in Jiangsu Province(JHB05-21)Technology Supporting Program of Jiangsu Province-Agriculture(SBE2014327)A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)~~
文摘[Objective] The aim was to study the properties of novel "light fertilizer", photo-conversion film, in order to evaluate its effect on the environmental factors and morphogenetic process of crops in the high tunnel. [Method] Photo-conversion film and Iongevous anti-dropping film were compared in terms of light, air and soil temperature utilizing the Facilities of leafy agriculture high tunnel intelligent monitoring system. Verifying the results by farmland experiment. [Result] Photo- conversion film indeed improved the light quality of high tunnel compared with the Iongevous anti- dripping film. The air and soil temperature was raised several degrees. Results of farmland experiment show that the average value of brassica chinensis fresh weight increased 19.15% compared to the control. [Conclusion] Photo-conversion film promotes more crop growth than Iongevous anti-dropping film due to improvement of light quality, air and soil temperature.
文摘Brassica chinensis L. were foliarly applied with glycinebetaine (GB), as this species is unable to synthesis GB and sensitive to osmotic stress such as salt. The exogenous GB was easily absorbed and transported by the leaf of B. chinensis . Its application (0-20 mmol/L) enhanced the plant tolerance to salt stress. The treatment of 15 mmol/L GB significantly decreased the Na + accumulation in leaf and root under NaCl stress. This difference in accumulating Na + and K + is caused by higher selectivity of root absorption. Furthermore, GB increased H +_ATPase activity of root plasma membrane evidently. This result strongly suggested that in root the decreased Na + accumulation was caused by the GB accumulation that enhanced the extrusion of Na + from the cell in some way through plasma membrane transporter, e.g. Na +/H + antiport driven by H +_ATPase. The GB application was also found to stabilize the plasma membrane, to decrease the loss of chlorophyll, and to stimulate the osmosis induced proline response under salt stress.
基金Supported by Modern Agricultural Industry Technology System Special Funds(CARS-25)Innovation Funds of Jiangxi Academy of Agricultural Sciences(2010CBS004)~~
文摘Brassica campestris ssp. chinensis, also known as non-heading Chinese cabbage, is an important vegetable widely distributed in southern China. High temperature is the most common adversity factor in vegetable production, because Brassica campestris ssp. chinensis is a thermophilic vegetable, which can't well grow at high temperature. In summer and autumn, high temperature stress would prevent Brassica campestris ssp. chinensis from growing and result in poor quality of its seedlings, seriously influencing yield and quality of the vegetable in later period. In this paper, present situation and latest advances in heat resistance research of Brassica campestris ssp. chinensis in recent years were reviewed at home and abroad. The research tendency in Bassica campestris ssp. chinensis was also described, providing reference for breeding of heat-resistant Brassica campestris ssp. chinensis.
基金Supported by a grant from Ministry of Science and Technology for the Project of Science and Technology Talents Serving in Enterprise(2009GJC50042)~~
文摘[Objective] The purpose of this study is to determine the effects of com-bined use of boron and manganese fertilizers on the nutritional quality and physio-logical indices of Brassica campestris. [Method] In the nutrient solutions for growing B. campestris by hydroponics, boric acid and manganese sulfate were added at 0.5, 2.5, and 7.5 mg/L respectively. Another treatment without boron and manganese was prepared as the control. Quality and physiological indices of B. campestris in the 10 treatments were measured. [Result] Boron and manganese shared obvious in-teraction in improving the quality and physiological indices of B. campestris. To cul-tivate B. campestris with high quality and strong resistance, the optimum concentra-tions of boron and manganese in the nutrient solution should be 2.5 mg/L boric acid and 2.5-7.5 mg/L manganese sulfate. [Conclusion] The findings wil provide refer-ence for studying effects of trace elements on nutrient composition of vegetables.
基金Supported by Natural Science Foundation of Jiangsu Province(BK20130715)National Science and Technology Program for Rural Development during the 12~(th) Five-Year Plan Period(2013BAD01B04-11)~~
文摘Objective] This study was conducted to investigate the genetic inheritance of clubroot resistance in Chinese non-heading cabbage (Brassica campestris ssp. chinensis). [Method] The clubroot resistance gene was introduced from a Brassica campestris ssp. pekinensis cultivar to non-heading Chinese cabbage, and the inheri-tance and molecular markers of clubroot resistance gene in parental lines, F1, F2 and BC1 of non-heading Chinese cabbage were studied through pathogen inoculation at seedling stage and ISSR-PCR. [Result] Clubroot resistance in non-heading Chi-nese cabbage was control ed by a single dominant gene. ISSR molecular markers with Bulk segregant analysis (BSA) found that primer-873 was linked to resistance gene, named CR-873, and the genetic distance between the marker and the resis-tance gene was 9.72 cM. [Conclusion] The results provide references for the molecular marker assisted breeding of non-heading Chinese cabbage.
文摘The influence of nitrification inhibitor(NI) 3,4 dimethylpyrazole phosphate(DMPP) on nitrate accumulation in greengrocery( Brassica campestris L. ssp. chinensis ) and vegetable soil at surface layer were investigated in field experiments in 2002 and 2003 Results showed that NI DMPP took no significant effect on yields of edible parts of greengrocery, but it could significantly decrease NO - 3 N concentration in greengrocery and in vegetable soil at surface layer. In addition, NI DMPP could reduce the NO - 3 N concentration during the prophase stage of storage.
文摘Glucosinolates (GSs) are a group of plant secondary metabolites containing abundant nitrogen (N) and sulfur (S) mainly in Brassica and have the beneficial effects on human health including anti-carcinogenic, cholesterol-reducing and other pharmacological effects. The objective of this study was to investigate the effect of different concentrations of N (5, 10, and 20 mmol L-a, denoted by N5, N10 and N20) and S (0,5, 1, and 2 mmol L^-1, denoted by S0.5, S1 and S2) on the yield and GSs in pakchoi (Brassica campestris L. ssp. chinensis var. communis) in hydroponics. Results showed that N10 and N20 significantly enhanced the yield compared with N5, however, N20 had a negative effect relative to N10. Only with N10 and N20 low S supply (S0.5) reduced the yield. The concentrations of aliphatic GSs, aromatic GS and total GSs were enhanced by N5 and indolyl GSs were enhanced by N20. S2 enhanced the concentration of individual GS and total GSs. The concentrations of indolyl GSs were maximized in N20S2 treatment, whereas the highest concentrations of aliphatic GSs, aromatic GS and total GSs were found in N5S2 treatment. Effects of N and S on aliphatic GSs were higher than on indolyl GSs. The results suggest that the accumulation of aliphatic GSs and aromatic GS could be enhanced by low N and high S and restricted by high N while that of indolyl GSs could be enhanced by high N and high S.
基金the National Natural Science Foundation of China (Grant Nos. 20535020, 20475046 and 20775062)the National "863" Hi-Tech Project of China (Grant No. 2006AA06Z404)the National Basic Research Program of China (Grant No. 2003CD415001)
文摘Brassica chinensis L. was chosen and exposed to different concentrations of Cd exposure to evaluate its Cd-accumulating capacity and its potential cellular defensive mechanisms. Cd accumulation in the shoots and roots of B. chinensis was up to 1348.3±461.8 and 3761.0±795.0 mg per killogram of dry weight, respectively, under 200 μmol/L of Cd exposure. Increasing Cd accumulation in the plant was accompanied by rapid accumulation of phytochelatins (PCs), and the sequestration of Cd by PCs provided a primary cellular mechanism for Cd detoxification and tolerance of B. chinensis. Furthermore, malondialdehyde formation, hydrogen peroxide content and antioxidative enzyme activities such as superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase were observed in the shoots of Cd-stressed B. chinensis. Increasing enzyme activities in response to concentrations of 5 to 50 μmol/L Cd showed an efficient defense against oxidative stress, suggesting that the antioxidative system was a secondary defensive mechanism. These resulted in reduced free Cd damage and enhanced Cd accumulation and tolerance. Glutathione plays a pivotal role in these two detoxification pathways. In general, these results suggested that PCs and the antioxidative system are synergistic in combatting Cd-induced oxidative stress and that they play important roles in Cd detoxification of B. chinensis, and also give a deep understanding of the natural defensive mechanisms in plants under heavy metal stress.
基金supported by the National Natural Science Foundation of China(39670512)
文摘To determine differential expression of genie male sterility A/B lines in Chinese cabbage-pak-choi (Brassica campestris ssp. chinensis Makino var. communis Tsen et Lee), we used the RNA fingerprinting technique, cDNA-AFLP analysis, in different developmental stages and different tissues. While no obvious differential expressions were observed in rosette leaves, florescence leaves, and scapes, some differential expressions were found in alabstrums of A/B lines and among leaves, scapes and alabstrums. We analyzed the al-abstrums collected in different developmental stages with 10 primer combinations. We got a unique band between middle size alabstrums and large alabstrums in B line in one of the ten pair primers, and in another one pair, one band reflecting a higher gene-expression level in A line than that in B line was obtained. No unique bands were found with the other primer combinations. The bands reflecting different gene-expression level were confirmed by Northern hybridization. The results indicated that cDNA-AFLP was a suitable tool for studying differential expression of genie male sterility in plants. SDS-polyacrylamide gel electrophoresis patterns of soluble proteins further verified the difference in A/B lines.
基金the National Natural Science Foundation of China(30671426)the Key Sci-Technology Project of Zhejiang Province,China(2005C12019-02)
文摘The study analyzed the silencing of BcMF12 gene regulated by BcA9 promoter in the transgenic pakchoi and confirmed the effect of antisense BcMF12 gene on the pollen development. A conserved BcMF12 gene fragment was amplified from the cDNA of flower buds in pakchoi (Brassica campestris L. ssp. chinensis, syn. B. rapa L. ssp. chinensis) and was fused to the anther specific BcA9 promoter. The plant antisense expression vector was constructed and then introduced into pakchoi via Agrobacterium-mediated transformation. The transgenic plants were screened by antibiotics and molecular analysis. PCR and Southern blot revealed that the antisense BcMF12-GUS fusion gene regulated by BcA9 promoter was integrated into transgenic plants. Northern blot suggested that the expression of BcMF12 gene was down-regulated significantly. The pollen germination rate of transgenic plants with antisense BcMF12 gene decreased as compared with that of the control plants. The expression of the gene BcMF12 related to the pollen development was inhibited by the antisense BcMF12 driven by BcA9 promoter, which consequently affected the pollen development in pakchoi.
基金supported by the National Natural Science Foundation of China (U22A20477 and 32201791)the China Postdoctoral Science Foundation (2020M682440)the Postdoctoral Fellowship Program of CPSF (GZB20230825).
文摘Inflorescence architecture is determined by inflorescence length,branch angles and the density of siliques,which affects planting density,lodging resistance and mechanical operation in rapeseed.However,the molecular mechanisms controlling inflorescence architecture are poorly understood,restricting the progress of breeding varieties with ideal plant architecture in oilseed rape.In this study,we have identified and characterized a rapeseed inflorescence development mutant,reduced inflorescence length(ril),which exhibits determinate and shortened inflorescences,reduced plant height,compact branches,and increased silique density.Through BSA-seq and map-based cloning,we find that RIL encodes a cyclic nucleotide-gated channel 20(BnaA01.CNGC20).A substitution of proline at the 304th position to leucine(P304L)was identified in the conserved transmembrane domain of BnaA01.CNGC20.This P304L substitution neither affects the subcellular localization and self-assembly of BnaA01.CNGC20,nor disrupts the interactions with BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1(BAK1),which interacts with CNGC20 and phosphorylates it to regulate Ca^(2+)channel stability.However,the P304L substitution increases channel activity and Ca^(2+)influx,which in turn induces immune responses such as cell death,H2O2 accumulation,upregulation of pathogenesis-related genes,and pattern-triggered immunity.The enhanced immunity improves the resistance to Leptosphaeria biglobosa and Sclerotinia sclerotiorum.Transcriptome analysis further revealed that CNGC20 plays dual roles in regulating plant growth and immunity via the brassinosteroid and auxin signaling pathways.The findings in this study provide deeper insights into the intricate relationship between cytosolic Ca^(2+)level and plant development and immunity,as well as the trade-off between immunity and the performance of yield-related traits in the heterozygous plants(+/ril),which may serve as a guide for balancing yield and disease resistance in oilseed rape breeding.