The Jiangaidarina granitic mass(JM) is an important part of the magmatic belt in Longmu CoShuanghu Suture Zone(LSSZ) in the central Tibetan Plateau. An integrated research involving wholerock geochemistry, zircon LA-I...The Jiangaidarina granitic mass(JM) is an important part of the magmatic belt in Longmu CoShuanghu Suture Zone(LSSZ) in the central Tibetan Plateau. An integrated research involving wholerock geochemistry, zircon LA-ICP-MS U-Pb ages and Hf isotopic compositions was carried out to define the timing, genesis and tectonic setting of the JM. Zircon LA-ICP-MS U-Pb ages have been obtained ranging from 210 to 215 Ma, rather than the Early Jurassic as previously thought. Fifteen granite samples contain hornblendes and show a negative correlation between POand SiO, indicating that the JM is an I-type granite. All the granites are enriched in LREE relative to HREE, with negative Eu anomalies(Eu/Eu*=0.56-0.81), and have similar trace elements patterns, with depletion of Ba, Nb, Sr and P. These suggest that the JM was fractionated, and this is also proved by the characteristic of negative correlations between oxide elements(TiO, MgO, FeOt, MnO, CaO) and SiO. Almost all ε(t) values of the granites are between-10.3 and-5.8, implying that the JM has a crustal source intimately related with the South Qiangtang Block(SQB), except for one(+10.2), showing a minor contribution from mantle source.Moreover, relatively low NaO/KO ratios(0.42-0.93) and high A/CNK values(0.91-1.50) reflect that the JM was predominately derived from the medium-high potassium basaltic crust, interacted with greywacke. Our new geochemical data and geochronological results imply that the Late Triassic magmas were generated in a post-collisional tectonic setting, probably caused by slab break-off of the Longmu Co-Shuanghu Tethyan Ocean(LSTO). This mechanism caused the asthenosphere upwelling, formed extension setting, offered an enormous amount of heat, and provided favorable conditions for emplacement of voluminous felsic magmas. Furthermore, the LSTO could be completely closed during the Middle Triassic, succeed by continental collision and later the slab broke off in the Late Triassic.展开更多
The thick Cenozoic unconsolidated aquifer is deposited under Sunan syncline core in Huaibei coalfield, the water yield property of unconsolidated bottom aquifer is strong and water pressure is high in some areas (up t...The thick Cenozoic unconsolidated aquifer is deposited under Sunan syncline core in Huaibei coalfield, the water yield property of unconsolidated bottom aquifer is strong and water pressure is high in some areas (up to 4 MPa in some areas). Water inrush accident often occurs during mining under unconsolidated aquifer, the biggest characteristic is abnormal mine pressure and support break-off during water inrush accident comparing with normal condition. In order to study mechanism of?support break-off and water inrush during mining under the high confined thick unconsolidated aquifer, a simulation of similar material was designed. The experimental results indicated that, under normal condition, the compound breakage sequence of water-resisting key strata between coal seam and high confined thick unconsolidated aquifer is from top to bottom and the basic reason of synchronous fracture is the load of bottom key strata increased suddenly when the breakage of top key strata happened. Because of high confined thick unconsolidated aquifer, surface acts on the bottom key strata soil layer in the form of uniformly distributed load, which is the load-transfer mechanism of confined thick unconsolidated aquifer. Once the overlying key strata compound breaks, the height of unstable strata will reach far more than 30 meters and exceed support capability of current fully-mechanized mining supporter, which leads to support break-off accident during mining process under confined unconsolidated aquifer.展开更多
The Torbat-e-Heydariyeh andesitic rocks(THA)are part of the Cenozoic continental arc magmatic system of the northern branch of the Neotethys Ocean(NE Iran).Columnar jointing is the most significant feature of these ro...The Torbat-e-Heydariyeh andesitic rocks(THA)are part of the Cenozoic continental arc magmatic system of the northern branch of the Neotethys Ocean(NE Iran).Columnar jointing is the most significant feature of these rocks and they also show porphyritic,vitrophyric,and vitroglomeroporphyric textures.Plagioclase,clinopyroxene,±orthopyroxene are the major mineral phases.The SHRIMP U-Pb zircon dating yielded an age of 41.00±0.69 Ma for the rocks(Middle Eocene,Bartonian).Geochemically,they are of medium-to high-K calc-alkaline affinity.Primitive mantle-normalized diagrams exhibit enrichment in large ion lithophile elements(LILE),such as Cs and Rb,and also depleted in high field strength elements(HFSE)and heavy rare earth elements(HREE),with prominent negative anomalies of Ti,Nb,Y,and Yb,suggesting a tectonic setting of an active continental margin.The chondrite-normalized REE diagram displays enrichment of light rare earth elements(LREE;La_(N)/Yb_(N)=5.37-6.66)and small negative Eu anomalies(Eu/Eu^(*)of 0.69-0.78).Thorium enrichment implies the reaction between the mantle wedge and the melt of subducting oceanic slab,and/or subducting sediment.The role of subducted sediments along with subducted oceanic lithosphere is evident in these magmatic rocks using Ba/La versus Th/Nd and Ba/Th versus La_(N)/Sm_(N)diagrams.Theε_(Nd)(t)and(^(87)Sr/^(86)Sr)_(i)values vary between-0.1 to+0.2 and 0.70489 to 0.70501,respectively,and are compatible with parental melts from subduction of the lithospheric mantle.We suggest that the THA rocks were produced by the partial melting of the metasomatized lithospheric mantle,which corresponds to slab break-off of the northward subducted Neotethys oceanic slab in an extensional setting.The hot asthenospheric mantle upwelling triggered by the Neotethys slab break-off would severely heat the physically mixed mantle wedge peridotite and therefore caused partial melting to produce the Middle Eocene volcanic rocks in NE Iran.展开更多
We present detailed geochronological,geochemical,and zircon Hf isotopic data for Late Paleozoic granitic rocks from Handagai and Zhonghe plutons in the Xing’an Block,NE China,aiming to provide constraints on their or...We present detailed geochronological,geochemical,and zircon Hf isotopic data for Late Paleozoic granitic rocks from Handagai and Zhonghe plutons in the Xing’an Block,NE China,aiming to provide constraints on their origin and tectonic implications.New zircon U-Pb ages indicate they were formed in the Late Devonian(ca.379 Ma) immediately after a striking 50 Ma magmatic lull(ca.430-380 Ma) in the Xing ’ an Block.Petrological and geochemical features suggest that the Handagai monzogranites and Zhonghe alkali-feldspar granites are I- and A-type granites,respectively,although both of them have high-K calc-alkaline features and positive zircon ε_(Hf)(t) values(+3.47 to +10.77).We infer that the Handagai monzogranites were produced by partial melting of juvenile basaltic crustal materials under a pressure of <8-10 kbar,whereas the Zhonghe alkali-feldspar granites were generated by partial melting of juvenile felsic crustal materials at shallower depths(P ≤ 4 kbar).Our results,together with published regional data,indicate their generation involves a subduction-related extensional setting.Slab break-off of the Hegenshan-Heihe oceanic plate may account for the subduction-related extensional setting,as well as the transformation of arc magmatism from the Early-Middle Devonian lull to the Late Devonian-Early Carboniferous flare-up in the Xing’an Block.展开更多
北山柳园地区分布大量的花岗岩类岩石,岩石类型有花岗闪长岩、二长花岗岩、钾长花岗岩和斑状花岗岩。锆石SHRIMP U—Pb 定年分析结果为:花岗闪长岩的侵位年代为423±8Ma 辉铜山以东(HT-)钾长花岗岩和二长花岗岩的侵位分别为436±...北山柳园地区分布大量的花岗岩类岩石,岩石类型有花岗闪长岩、二长花岗岩、钾长花岗岩和斑状花岗岩。锆石SHRIMP U—Pb 定年分析结果为:花岗闪长岩的侵位年代为423±8Ma 辉铜山以东(HT-)钾长花岗岩和二长花岗岩的侵位分别为436±9Ma 和397±7Ma。该区花岗质岩石都具有大离子亲石元素和轻稀土元素相对富集,K、Ni、Ta、P 和 Ti 负异常的特征,属于准铝质到过铝质的高 K 花岗岩。花岗闪长岩无 Sr 和 Eu负异常的特征,ε_(Nd)(t)=-2.5~-0.8,其岩浆源于岩石圈地幔或是软流圈与岩石圈地幔相混合的岩浆熔融,并受到了含有火山弧组分的年轻地壳的混染。钾长花岗岩和二长花岗岩具有 Sr 和 Eu 负异常的特征,ε_(Nd)(t)值分别为+1.4、-4.0~-2.0和-2.7~-0.3。HT-钾长花岗岩岩浆主要源于由于岩石圈地幔岩浆作用而导致上覆年轻地壳物质的部分熔融;花牛山附近(HN-)钾长花岗岩岩浆主要源于软流圈地幔部分熔融,可能受到了部分年轻地壳物质的混染;二长花岗岩岩浆主要源于年轻地壳的部分熔融。柳园地区4类花岗岩类岩石都是后碰撞构造背景下的岩浆产物,岩浆形成可能与俯冲板片断离有关。展开更多
近年来地震层析成像揭示出可可西里-西昆仑中新世-第四纪钾质火山岩带下方存在一个深达900km的巨型地幔低速体,空间上与新特提斯洋和印度大陆俯冲断离板片沉降形成的冷地幔下降流共存(Replumaz et al.,2010a,b),两者构成统一的地幔对流...近年来地震层析成像揭示出可可西里-西昆仑中新世-第四纪钾质火山岩带下方存在一个深达900km的巨型地幔低速体,空间上与新特提斯洋和印度大陆俯冲断离板片沉降形成的冷地幔下降流共存(Replumaz et al.,2010a,b),两者构成统一的地幔对流体系。研究表明,羌塘古近纪(60~34Ma)钠质玄武岩和高钾钙碱性玄武岩均以富含Ti O2、P2O5和大离子亲石元素为特征,主体具有与OIB相近的微量元素组成和弱亏损的Sr、Nd同位素特征,指示岩浆起源于软流圈的上涌熔融,但Nb、Ta的弱亏损表明岩浆源区有岩石圈地幔熔融组分的贡献。羌塘(32~26Ma)碱性钾质玄武岩与可可西里和西昆仑中新世以来喷发的钾质玄武岩的地球化学性质相近,不相容元素比值和Sr、Nd同位素组成指示岩浆起源于古俯冲地幔楔的低程度熔融。这些特征表明藏北软流圈上涌作用始于古近纪,初始上涌中心位于羌塘地体之下。计算表明藏北古近纪火山岩距离当时的印度大陆北缘的最大和最小距离约为1250km和700km,与现今可可西里地幔低速体的南、北边界与印度大陆北缘的距离相近,支持羌塘古近纪地幔上涌作用也是受藏南冷地幔下降流所驱动。青藏高原在南北缩短过程中不仅表现为软流圈自西向东挤出流动,地幔垂向对流也是其重要的运动形式,在地幔上升流形成的藏北热幔区内,地壳的水平缩短增厚与岩石圈地幔的伸展减薄呈脉动式共存。藏南冷地幔下降流和藏北热地幔上升流的持续北移是导致藏北后碰撞火山岩时空迁移的主要控制因素。展开更多
基金financially supported by the geological survey project of China Geological Survey (Grant No. DD20160161)
文摘The Jiangaidarina granitic mass(JM) is an important part of the magmatic belt in Longmu CoShuanghu Suture Zone(LSSZ) in the central Tibetan Plateau. An integrated research involving wholerock geochemistry, zircon LA-ICP-MS U-Pb ages and Hf isotopic compositions was carried out to define the timing, genesis and tectonic setting of the JM. Zircon LA-ICP-MS U-Pb ages have been obtained ranging from 210 to 215 Ma, rather than the Early Jurassic as previously thought. Fifteen granite samples contain hornblendes and show a negative correlation between POand SiO, indicating that the JM is an I-type granite. All the granites are enriched in LREE relative to HREE, with negative Eu anomalies(Eu/Eu*=0.56-0.81), and have similar trace elements patterns, with depletion of Ba, Nb, Sr and P. These suggest that the JM was fractionated, and this is also proved by the characteristic of negative correlations between oxide elements(TiO, MgO, FeOt, MnO, CaO) and SiO. Almost all ε(t) values of the granites are between-10.3 and-5.8, implying that the JM has a crustal source intimately related with the South Qiangtang Block(SQB), except for one(+10.2), showing a minor contribution from mantle source.Moreover, relatively low NaO/KO ratios(0.42-0.93) and high A/CNK values(0.91-1.50) reflect that the JM was predominately derived from the medium-high potassium basaltic crust, interacted with greywacke. Our new geochemical data and geochronological results imply that the Late Triassic magmas were generated in a post-collisional tectonic setting, probably caused by slab break-off of the Longmu Co-Shuanghu Tethyan Ocean(LSTO). This mechanism caused the asthenosphere upwelling, formed extension setting, offered an enormous amount of heat, and provided favorable conditions for emplacement of voluminous felsic magmas. Furthermore, the LSTO could be completely closed during the Middle Triassic, succeed by continental collision and later the slab broke off in the Late Triassic.
文摘The thick Cenozoic unconsolidated aquifer is deposited under Sunan syncline core in Huaibei coalfield, the water yield property of unconsolidated bottom aquifer is strong and water pressure is high in some areas (up to 4 MPa in some areas). Water inrush accident often occurs during mining under unconsolidated aquifer, the biggest characteristic is abnormal mine pressure and support break-off during water inrush accident comparing with normal condition. In order to study mechanism of?support break-off and water inrush during mining under the high confined thick unconsolidated aquifer, a simulation of similar material was designed. The experimental results indicated that, under normal condition, the compound breakage sequence of water-resisting key strata between coal seam and high confined thick unconsolidated aquifer is from top to bottom and the basic reason of synchronous fracture is the load of bottom key strata increased suddenly when the breakage of top key strata happened. Because of high confined thick unconsolidated aquifer, surface acts on the bottom key strata soil layer in the form of uniformly distributed load, which is the load-transfer mechanism of confined thick unconsolidated aquifer. Once the overlying key strata compound breaks, the height of unstable strata will reach far more than 30 meters and exceed support capability of current fully-mechanized mining supporter, which leads to support break-off accident during mining process under confined unconsolidated aquifer.
文摘The Torbat-e-Heydariyeh andesitic rocks(THA)are part of the Cenozoic continental arc magmatic system of the northern branch of the Neotethys Ocean(NE Iran).Columnar jointing is the most significant feature of these rocks and they also show porphyritic,vitrophyric,and vitroglomeroporphyric textures.Plagioclase,clinopyroxene,±orthopyroxene are the major mineral phases.The SHRIMP U-Pb zircon dating yielded an age of 41.00±0.69 Ma for the rocks(Middle Eocene,Bartonian).Geochemically,they are of medium-to high-K calc-alkaline affinity.Primitive mantle-normalized diagrams exhibit enrichment in large ion lithophile elements(LILE),such as Cs and Rb,and also depleted in high field strength elements(HFSE)and heavy rare earth elements(HREE),with prominent negative anomalies of Ti,Nb,Y,and Yb,suggesting a tectonic setting of an active continental margin.The chondrite-normalized REE diagram displays enrichment of light rare earth elements(LREE;La_(N)/Yb_(N)=5.37-6.66)and small negative Eu anomalies(Eu/Eu^(*)of 0.69-0.78).Thorium enrichment implies the reaction between the mantle wedge and the melt of subducting oceanic slab,and/or subducting sediment.The role of subducted sediments along with subducted oceanic lithosphere is evident in these magmatic rocks using Ba/La versus Th/Nd and Ba/Th versus La_(N)/Sm_(N)diagrams.Theε_(Nd)(t)and(^(87)Sr/^(86)Sr)_(i)values vary between-0.1 to+0.2 and 0.70489 to 0.70501,respectively,and are compatible with parental melts from subduction of the lithospheric mantle.We suggest that the THA rocks were produced by the partial melting of the metasomatized lithospheric mantle,which corresponds to slab break-off of the northward subducted Neotethys oceanic slab in an extensional setting.The hot asthenospheric mantle upwelling triggered by the Neotethys slab break-off would severely heat the physically mixed mantle wedge peridotite and therefore caused partial melting to produce the Middle Eocene volcanic rocks in NE Iran.
基金financially supported by the National Natural Science Foundation of China(No.41872056)the China Postdoctoral Science Foundation(Nos.2020M681037 and 2021T140252)。
文摘We present detailed geochronological,geochemical,and zircon Hf isotopic data for Late Paleozoic granitic rocks from Handagai and Zhonghe plutons in the Xing’an Block,NE China,aiming to provide constraints on their origin and tectonic implications.New zircon U-Pb ages indicate they were formed in the Late Devonian(ca.379 Ma) immediately after a striking 50 Ma magmatic lull(ca.430-380 Ma) in the Xing ’ an Block.Petrological and geochemical features suggest that the Handagai monzogranites and Zhonghe alkali-feldspar granites are I- and A-type granites,respectively,although both of them have high-K calc-alkaline features and positive zircon ε_(Hf)(t) values(+3.47 to +10.77).We infer that the Handagai monzogranites were produced by partial melting of juvenile basaltic crustal materials under a pressure of <8-10 kbar,whereas the Zhonghe alkali-feldspar granites were generated by partial melting of juvenile felsic crustal materials at shallower depths(P ≤ 4 kbar).Our results,together with published regional data,indicate their generation involves a subduction-related extensional setting.Slab break-off of the Hegenshan-Heihe oceanic plate may account for the subduction-related extensional setting,as well as the transformation of arc magmatism from the Early-Middle Devonian lull to the Late Devonian-Early Carboniferous flare-up in the Xing’an Block.
文摘北山柳园地区分布大量的花岗岩类岩石,岩石类型有花岗闪长岩、二长花岗岩、钾长花岗岩和斑状花岗岩。锆石SHRIMP U—Pb 定年分析结果为:花岗闪长岩的侵位年代为423±8Ma 辉铜山以东(HT-)钾长花岗岩和二长花岗岩的侵位分别为436±9Ma 和397±7Ma。该区花岗质岩石都具有大离子亲石元素和轻稀土元素相对富集,K、Ni、Ta、P 和 Ti 负异常的特征,属于准铝质到过铝质的高 K 花岗岩。花岗闪长岩无 Sr 和 Eu负异常的特征,ε_(Nd)(t)=-2.5~-0.8,其岩浆源于岩石圈地幔或是软流圈与岩石圈地幔相混合的岩浆熔融,并受到了含有火山弧组分的年轻地壳的混染。钾长花岗岩和二长花岗岩具有 Sr 和 Eu 负异常的特征,ε_(Nd)(t)值分别为+1.4、-4.0~-2.0和-2.7~-0.3。HT-钾长花岗岩岩浆主要源于由于岩石圈地幔岩浆作用而导致上覆年轻地壳物质的部分熔融;花牛山附近(HN-)钾长花岗岩岩浆主要源于软流圈地幔部分熔融,可能受到了部分年轻地壳物质的混染;二长花岗岩岩浆主要源于年轻地壳的部分熔融。柳园地区4类花岗岩类岩石都是后碰撞构造背景下的岩浆产物,岩浆形成可能与俯冲板片断离有关。
文摘近年来地震层析成像揭示出可可西里-西昆仑中新世-第四纪钾质火山岩带下方存在一个深达900km的巨型地幔低速体,空间上与新特提斯洋和印度大陆俯冲断离板片沉降形成的冷地幔下降流共存(Replumaz et al.,2010a,b),两者构成统一的地幔对流体系。研究表明,羌塘古近纪(60~34Ma)钠质玄武岩和高钾钙碱性玄武岩均以富含Ti O2、P2O5和大离子亲石元素为特征,主体具有与OIB相近的微量元素组成和弱亏损的Sr、Nd同位素特征,指示岩浆起源于软流圈的上涌熔融,但Nb、Ta的弱亏损表明岩浆源区有岩石圈地幔熔融组分的贡献。羌塘(32~26Ma)碱性钾质玄武岩与可可西里和西昆仑中新世以来喷发的钾质玄武岩的地球化学性质相近,不相容元素比值和Sr、Nd同位素组成指示岩浆起源于古俯冲地幔楔的低程度熔融。这些特征表明藏北软流圈上涌作用始于古近纪,初始上涌中心位于羌塘地体之下。计算表明藏北古近纪火山岩距离当时的印度大陆北缘的最大和最小距离约为1250km和700km,与现今可可西里地幔低速体的南、北边界与印度大陆北缘的距离相近,支持羌塘古近纪地幔上涌作用也是受藏南冷地幔下降流所驱动。青藏高原在南北缩短过程中不仅表现为软流圈自西向东挤出流动,地幔垂向对流也是其重要的运动形式,在地幔上升流形成的藏北热幔区内,地壳的水平缩短增厚与岩石圈地幔的伸展减薄呈脉动式共存。藏南冷地幔下降流和藏北热地幔上升流的持续北移是导致藏北后碰撞火山岩时空迁移的主要控制因素。