The paper proposes a three-scale binary medium-based constitutive model on the basis of the meso structures and micro components to describe the elasto-plastic mechanical behavior of mudstone samples.Based on the brea...The paper proposes a three-scale binary medium-based constitutive model on the basis of the meso structures and micro components to describe the elasto-plastic mechanical behavior of mudstone samples.Based on the breakage mechanism of geomaterials,mudstone samples are considered as two different materials(bonded and frictional elements)at mesoscales.From micro to meso scales,given the similar but different mineralogy composition and porosity of the bonded and frictional elements at microscale,as well as their separate mechanical characteristics,different homogenization methods are adopted to obtain their respective meso mechanical properties.At the mesoscale,in view of the unique meso structures and the continuous material transformation,the extended self-consistent scheme(SCS)is improved to be adaptable to elasto-plastic composites with varying meso components.With the consideration of the evolution form of the breakage ratio under the external loading being given based on the assumed strength distribution of the meso bonded elements,the mechanical relations between meso and macro scales are established.Finally,on the basis of the mean-field method and combined with the critical mechanical connections between different scales,the micro-meso-macro constitutive model for mudstone samples are proposed.The model validation shows that,with a few model parameters,the proposed model can well reflect the stress and deformation features of mudstone samples with complex micro-components.展开更多
The slope stability of Ya’an expressway in Sichuan dominated by mudstone strata,is influenced greatly by both the mechanical properties and stressstrain relationship of mudstone.In this paper,the mechanical propertie...The slope stability of Ya’an expressway in Sichuan dominated by mudstone strata,is influenced greatly by both the mechanical properties and stressstrain relationship of mudstone.In this paper,the mechanical properties of the Ya’an mudstone samples under triaxial compression conditions were studied,based on an established constitutive model under the framework of breakage mechanics to simulate the mechanical properties of mudstone.Firstly,triaxial compression tests and SEM tests at the confining pressures of 0.5 MPa,1.0 MPa,and 2.0 MPa were carried out on the mudstone samples,and it was found that the mudstone sample undergoes strain softening and dilatancy followed by the volumetric compaction.Then,based on analysis on the breakage mechanism of the above test results,we idealized the mudstone sample as a binary medium material consisting of the bonded elements and frictional elements,of which the bonded elements are composed of solid matrix and pores,and the frictional elements are composed of broken aggregates.During the loading process,the cementation between clay minerals and non-clay minerals in the mudstone sample is first destroyed,leading to the formation of micro-cracks within the particle aggregate,that is,the bonded elements are gradually damaged during the loading process and gradually turned into the frictional elements,and the two jointly bear the external load.The bonded elements are composed of mudstone matrix and pores,which have the cementitious characteristics of mudstone,and the frictional elements are composed of the broken aggregate with the frictional characteristics of the broken particles.Based on the homogenization theory,the constitutive model for the mudstone is established,and the determining method for model parameters is also given.Finally,the results of the triaxial compression tests of the mudstone samples are predicted by the constitutive model proposed here,which can reflect the main mechanical properties of the mudstone samples.展开更多
High-speed stirred mills are utilized to grind particles below 10mm. Grinding sulphide minerals to as low as 10mm achieve adequate mineral liberation for successful downstream mineral processing operations, such as fl...High-speed stirred mills are utilized to grind particles below 10mm. Grinding sulphide minerals to as low as 10mm achieve adequate mineral liberation for successful downstream mineral processing operations, such as flotation and leaching. Particle breakage mechanism such as fracture or abrasion, determines the morphological surface features of the product particles. It is anticipated that particles, which break along grain boundaries (intergranular) produce rough surfaces, whereas particles that break across the grain boundaries (transgranular) possess smoother surfaces. In this study, particles are ground in a stirred mill and their morphological features were analyzed using automated and manual detection methods. Literature and conventional belief are that high-speed stirred mills break particles by attrition. This paper showed that fracture is also an important breakage mechanism along with attrition. Breakage mechanism is a factor of input stress intensity, in the form of the mill agitator speed, and type of mineral. It is observed that at higher agitator speed galena fractures along the grain boundaries, whereas quartz, abrade across the grain boundaries.展开更多
When tunnel boring machines(TBMs)excavate through jointed rock masses,the cutting efficiency is strongly affected by the shear strength of joints,the mechanism of which,however,remains poorly understood.In this study,...When tunnel boring machines(TBMs)excavate through jointed rock masses,the cutting efficiency is strongly affected by the shear strength of joints,the mechanism of which,however,remains poorly understood.In this study,a series of disc-cutter indentation tests were conducted on granite rock mass specimens with different joint shear strengths.During the indentation,the cracking process was recorded by a digital image correlation(DIC)system.The deformation and strength of specimens,cracking behavior,rock breakage mode and cutting efficiency were quantitatively investigated.In addition,to investigate the combined effects of joint shear strength,orientation and spacing on the rock breakage mechanism,numerical rock mass models were established based on a particle flow code PFC2D.Experimental results reveal that the cracking of primary and secondary cracks changes from the mixed shear-tensile to tensile mode in the initial stage,while the joint shear strength does not affect the cracking mode in the subsequent propagation process.The rock breakage mode is classified to an internal block breakage mode,a cross-joint breakage mode and a cutters-dependent breakage mode.The cross-joint breakage mode is optimal for improving the cutting efficiency.Numerical simulation results reveal that the increase in the joint shear strength changes the internal block breakage mode to cross-joint breakage mode for rock masses of particular ranges of joint orientation and spacing.These findings provide basis for improving the TBM cutting efficiency through jointed rock masses.展开更多
Understanding the breakage characteristics of rice grains is an important means to reduce rice breakage rate. However, the dynamic breakage mechanism of rice grain is unclear due to the lack of a reasonable breakage m...Understanding the breakage characteristics of rice grains is an important means to reduce rice breakage rate. However, the dynamic breakage mechanism of rice grain is unclear due to the lack of a reasonable breakage model. In this study, the uniaxial compression test and drop weight test of single rice were carried out, the breakage model of rice grain was constructed, the reliability of rice model was verified by the experiment and simulation results. The results showed that the fracture energy distribution of rice can be obtained by uniaxial compression test, the specific fracture energy of rice accords with a lognormal distribution, and the median specific fracture energy of rice is 479.75 J/kg. The damage accumulation coefficient and fragment size distribution of rice can be acquired by drop test, the result of damage accumulation coefficient of rice was 4.3. Rice grain breakage mainly occurs in the milling section of the vertical circulation rice mill.展开更多
Summarized the four main sources of CO gas on the working face based on investigation and local observation: firstly,it analyzed the mechanism that CO gas was produced by spontaneous combustion and oxygenation of gob ...Summarized the four main sources of CO gas on the working face based on investigation and local observation: firstly,it analyzed the mechanism that CO gas was produced by spontaneous combustion and oxygenation of gob residual coal;next,it illus- trated the theory that special coal seam deposits natural CO gas,and provided correlative experiment data;and then,it illustrated the reason of the CO gas in working face in- creased relatively in the course of coal cutter's shearing,according to the translation be- tween mechanism energy and inner energy and the rupture of carbon molecule side chain during coal exploitation;lastly,illustrated the reason of CO gas appearance and the rela- tively release quantity during coal mine blasting underground.We find out the source of CO gas on the working face accurately,and provide advantages for appropriate prevention and practical management measures.展开更多
Existing strength criteria are mostly formulated to describe the mechanical properties of reconstituted soils. However, the engineering characteristics of structured soils are different from those of reconstituted soi...Existing strength criteria are mostly formulated to describe the mechanical properties of reconstituted soils. However, the engineering characteristics of structured soils are different from those of reconstituted soils in many aspects, especially in their strength properties, Thus, the influence of soil structure (bonding and fabric) on the mechanical properties of structured soils cannot be correctly described, By analyzing the breakage mechanism of natural soils, the structured soils can be conceptualized as binary medium materials consisting of bonded blocks and weakened bands. On this basis, a new strength criterion is pro- posed for structured soils, The expressions of the strength criterion on both meridian and deviator planes are given to describe the strength properties of structured soils on these planes. The proposed strength criterion is compared with available test data under conventional and true triaxial stress conditions in the literature. It is observed that the proposed strength criterion agrees well with the test data.展开更多
Droplet breakage is a common phenomenon in converting a pipe flow to a swirl flow in a vane-type pipe separator(VTPS)’inlet.The evaluation of the dispersed droplet sizes after breakage is crucial to the optimum desig...Droplet breakage is a common phenomenon in converting a pipe flow to a swirl flow in a vane-type pipe separator(VTPS)’inlet.The evaluation of the dispersed droplet sizes after breakage is crucial to the optimum design of the inlet structure and the estimation of the oil-water separation performance.This paper studies the droplet behavior in a swirl flow produced by guiding vanes.Experiments are performed with two different guiding vanes at the inlet of the VTPS.The sizes of the produced oil droplets at the downstream of the guiding vanes are measured in situ using a Malvern Insitec SX.The results indicate that the streamlined deflector is superior to the semi-elliptical plate for the VTPS’optimization based on the comparison of the droplet sizes in their respective induced swirl flow fields,which can be explained by a modified T-model.Our study suggests that the use of the modified T-model is a reliable method to optimize the design of the guiding vane in the swirling generating stage.展开更多
基金the funding of Highway Planning,Survey and Design Research Institute,Sichuan Provincial Transport Department(No.2020-WX-15)the National Natural Science Foundation of China(NSFC)(No.U22A20596).
文摘The paper proposes a three-scale binary medium-based constitutive model on the basis of the meso structures and micro components to describe the elasto-plastic mechanical behavior of mudstone samples.Based on the breakage mechanism of geomaterials,mudstone samples are considered as two different materials(bonded and frictional elements)at mesoscales.From micro to meso scales,given the similar but different mineralogy composition and porosity of the bonded and frictional elements at microscale,as well as their separate mechanical characteristics,different homogenization methods are adopted to obtain their respective meso mechanical properties.At the mesoscale,in view of the unique meso structures and the continuous material transformation,the extended self-consistent scheme(SCS)is improved to be adaptable to elasto-plastic composites with varying meso components.With the consideration of the evolution form of the breakage ratio under the external loading being given based on the assumed strength distribution of the meso bonded elements,the mechanical relations between meso and macro scales are established.Finally,on the basis of the mean-field method and combined with the critical mechanical connections between different scales,the micro-meso-macro constitutive model for mudstone samples are proposed.The model validation shows that,with a few model parameters,the proposed model can well reflect the stress and deformation features of mudstone samples with complex micro-components.
基金supported by Highway Planning,Survey and Design Research Institute,Sichuan Provincial Transport Department(Grant No.2020WX-15)the funding of National Natural Science Foundation of China(NSFC)(Grant No.U22A20596)。
文摘The slope stability of Ya’an expressway in Sichuan dominated by mudstone strata,is influenced greatly by both the mechanical properties and stressstrain relationship of mudstone.In this paper,the mechanical properties of the Ya’an mudstone samples under triaxial compression conditions were studied,based on an established constitutive model under the framework of breakage mechanics to simulate the mechanical properties of mudstone.Firstly,triaxial compression tests and SEM tests at the confining pressures of 0.5 MPa,1.0 MPa,and 2.0 MPa were carried out on the mudstone samples,and it was found that the mudstone sample undergoes strain softening and dilatancy followed by the volumetric compaction.Then,based on analysis on the breakage mechanism of the above test results,we idealized the mudstone sample as a binary medium material consisting of the bonded elements and frictional elements,of which the bonded elements are composed of solid matrix and pores,and the frictional elements are composed of broken aggregates.During the loading process,the cementation between clay minerals and non-clay minerals in the mudstone sample is first destroyed,leading to the formation of micro-cracks within the particle aggregate,that is,the bonded elements are gradually damaged during the loading process and gradually turned into the frictional elements,and the two jointly bear the external load.The bonded elements are composed of mudstone matrix and pores,which have the cementitious characteristics of mudstone,and the frictional elements are composed of the broken aggregate with the frictional characteristics of the broken particles.Based on the homogenization theory,the constitutive model for the mudstone is established,and the determining method for model parameters is also given.Finally,the results of the triaxial compression tests of the mudstone samples are predicted by the constitutive model proposed here,which can reflect the main mechanical properties of the mudstone samples.
文摘High-speed stirred mills are utilized to grind particles below 10mm. Grinding sulphide minerals to as low as 10mm achieve adequate mineral liberation for successful downstream mineral processing operations, such as flotation and leaching. Particle breakage mechanism such as fracture or abrasion, determines the morphological surface features of the product particles. It is anticipated that particles, which break along grain boundaries (intergranular) produce rough surfaces, whereas particles that break across the grain boundaries (transgranular) possess smoother surfaces. In this study, particles are ground in a stirred mill and their morphological features were analyzed using automated and manual detection methods. Literature and conventional belief are that high-speed stirred mills break particles by attrition. This paper showed that fracture is also an important breakage mechanism along with attrition. Breakage mechanism is a factor of input stress intensity, in the form of the mill agitator speed, and type of mineral. It is observed that at higher agitator speed galena fractures along the grain boundaries, whereas quartz, abrade across the grain boundaries.
基金The financial support from the National Natural Science Foundation of China(Grant Nos.41831290,41907167 and 51708354)Natural Science Foundation of Zhejiang Province(Grant No.LTGS23E040001)Natural Science Foundation of Hunan Province(Grant No.2022JJ40521)is greatly appreciated.
文摘When tunnel boring machines(TBMs)excavate through jointed rock masses,the cutting efficiency is strongly affected by the shear strength of joints,the mechanism of which,however,remains poorly understood.In this study,a series of disc-cutter indentation tests were conducted on granite rock mass specimens with different joint shear strengths.During the indentation,the cracking process was recorded by a digital image correlation(DIC)system.The deformation and strength of specimens,cracking behavior,rock breakage mode and cutting efficiency were quantitatively investigated.In addition,to investigate the combined effects of joint shear strength,orientation and spacing on the rock breakage mechanism,numerical rock mass models were established based on a particle flow code PFC2D.Experimental results reveal that the cracking of primary and secondary cracks changes from the mixed shear-tensile to tensile mode in the initial stage,while the joint shear strength does not affect the cracking mode in the subsequent propagation process.The rock breakage mode is classified to an internal block breakage mode,a cross-joint breakage mode and a cutters-dependent breakage mode.The cross-joint breakage mode is optimal for improving the cutting efficiency.Numerical simulation results reveal that the increase in the joint shear strength changes the internal block breakage mode to cross-joint breakage mode for rock masses of particular ranges of joint orientation and spacing.These findings provide basis for improving the TBM cutting efficiency through jointed rock masses.
基金The authors express their acknowledgment to the Heilongjiang Provincial Postdoctoral Science Foundation(project Nos.LBHZ22008,LBH-Z23098)National Natural Science Foundation of China(grant No.11802057)for financial support and all the persons whoassisted inthis work.
文摘Understanding the breakage characteristics of rice grains is an important means to reduce rice breakage rate. However, the dynamic breakage mechanism of rice grain is unclear due to the lack of a reasonable breakage model. In this study, the uniaxial compression test and drop weight test of single rice were carried out, the breakage model of rice grain was constructed, the reliability of rice model was verified by the experiment and simulation results. The results showed that the fracture energy distribution of rice can be obtained by uniaxial compression test, the specific fracture energy of rice accords with a lognormal distribution, and the median specific fracture energy of rice is 479.75 J/kg. The damage accumulation coefficient and fragment size distribution of rice can be acquired by drop test, the result of damage accumulation coefficient of rice was 4.3. Rice grain breakage mainly occurs in the milling section of the vertical circulation rice mill.
文摘Summarized the four main sources of CO gas on the working face based on investigation and local observation: firstly,it analyzed the mechanism that CO gas was produced by spontaneous combustion and oxygenation of gob residual coal;next,it illus- trated the theory that special coal seam deposits natural CO gas,and provided correlative experiment data;and then,it illustrated the reason of the CO gas in working face in- creased relatively in the course of coal cutter's shearing,according to the translation be- tween mechanism energy and inner energy and the rupture of carbon molecule side chain during coal exploitation;lastly,illustrated the reason of CO gas appearance and the rela- tively release quantity during coal mine blasting underground.We find out the source of CO gas on the working face accurately,and provide advantages for appropriate prevention and practical management measures.
文摘Existing strength criteria are mostly formulated to describe the mechanical properties of reconstituted soils. However, the engineering characteristics of structured soils are different from those of reconstituted soils in many aspects, especially in their strength properties, Thus, the influence of soil structure (bonding and fabric) on the mechanical properties of structured soils cannot be correctly described, By analyzing the breakage mechanism of natural soils, the structured soils can be conceptualized as binary medium materials consisting of bonded blocks and weakened bands. On this basis, a new strength criterion is pro- posed for structured soils, The expressions of the strength criterion on both meridian and deviator planes are given to describe the strength properties of structured soils on these planes. The proposed strength criterion is compared with available test data under conventional and true triaxial stress conditions in the literature. It is observed that the proposed strength criterion agrees well with the test data.
文摘Droplet breakage is a common phenomenon in converting a pipe flow to a swirl flow in a vane-type pipe separator(VTPS)’inlet.The evaluation of the dispersed droplet sizes after breakage is crucial to the optimum design of the inlet structure and the estimation of the oil-water separation performance.This paper studies the droplet behavior in a swirl flow produced by guiding vanes.Experiments are performed with two different guiding vanes at the inlet of the VTPS.The sizes of the produced oil droplets at the downstream of the guiding vanes are measured in situ using a Malvern Insitec SX.The results indicate that the streamlined deflector is superior to the semi-elliptical plate for the VTPS’optimization based on the comparison of the droplet sizes in their respective induced swirl flow fields,which can be explained by a modified T-model.Our study suggests that the use of the modified T-model is a reliable method to optimize the design of the guiding vane in the swirling generating stage.