Current study adopted gene flow theory and selection index method to compare the breeding efficiency of three breeding plans in the Chinese Holstein cattle using ZPLAN software. Simulated conventional progeny-testing ...Current study adopted gene flow theory and selection index method to compare the breeding efficiency of three breeding plans in the Chinese Holstein cattle using ZPLAN software. Simulated conventional progeny-testing program (PT) and young sire program (YS) were compared with breeding program using genomic selection (GS) taking parameters derived from Chinese Holstein breeding system. The results showed that, GS shortened generation interval by 1.5-2.2 years, and increased the genetic progress by 30-50%, comparing to PT and YS, respectively. Economic analysis showed that GS could obtain a higher breeding efficiency, being 119 and 97% higher than that of PT and YS, respectively; and GS was also powerful in improving functional traits with a low heritability. Main factors affecting breeding efficiency in GS were further discussed, including selection intensity, accuracy and the cost of SNP genotyping. Our finding provided references for future designing and implementing GS in Chinese dairy population.展开更多
基金supported by the International S&T Cooperation Program (2008DFA31120)the National Importation of Agriculture Advanced Technology 948 Project of China (2010-C14)+2 种基金the Special Fund for Agro-Scientific Research in the Public Interest,China (nyhyzx07-36)the National Key Technologies R&D Program of China (2006BAD04A01)the Ear-marked Fund for Modern Agro-Industry Technology Research System,China (CARS-37)
文摘Current study adopted gene flow theory and selection index method to compare the breeding efficiency of three breeding plans in the Chinese Holstein cattle using ZPLAN software. Simulated conventional progeny-testing program (PT) and young sire program (YS) were compared with breeding program using genomic selection (GS) taking parameters derived from Chinese Holstein breeding system. The results showed that, GS shortened generation interval by 1.5-2.2 years, and increased the genetic progress by 30-50%, comparing to PT and YS, respectively. Economic analysis showed that GS could obtain a higher breeding efficiency, being 119 and 97% higher than that of PT and YS, respectively; and GS was also powerful in improving functional traits with a low heritability. Main factors affecting breeding efficiency in GS were further discussed, including selection intensity, accuracy and the cost of SNP genotyping. Our finding provided references for future designing and implementing GS in Chinese dairy population.