Cracking during construction is a common occurrence in modern bridge engineering that can directly impact the overall safety of the bridge.Therefore,it is essential to focus on preventing and controlling cracks.As the...Cracking during construction is a common occurrence in modern bridge engineering that can directly impact the overall safety of the bridge.Therefore,it is essential to focus on preventing and controlling cracks.As the construction technology for bridge engineering has evolved,the internal quality of construction has significantly improved.However,the appearance quality remains a crucial factor that reflects the technical expertise of a construction company.Therefore,minimizing cracks and improving the appearance quality of concrete are critical issues that require the attention of construction units,supervision departments,and construction companies.This article will analyze the causes of cracking and suggest corresponding prevention and treatment methods.展开更多
This article analyzes the application strategies of shotcrete anchor support technology using a highway bridge-tunnel construction project as an example.The article covers various strategies,including support plan for...This article analyzes the application strategies of shotcrete anchor support technology using a highway bridge-tunnel construction project as an example.The article covers various strategies,including support plan formulation,mortar shotcrete anchor construction,grid steel frame construction,steel mesh construction,and concrete support construction.This analysis aims to provide a guideline for those interested in applying this technology and improving the quality and safety of highway bridges and tunnels construction.展开更多
The questions of what kind of individuals university education should cultivate,how to cultivate them,and for whom they are being trained are pressing issues that require immediate solutions.Implementing ideological a...The questions of what kind of individuals university education should cultivate,how to cultivate them,and for whom they are being trained are pressing issues that require immediate solutions.Implementing ideological and political education is a fundamental way to address these challenges.Integrating political education into professional courses is just as important as imparting knowledge,fostering interest,transmitting values,and shaping students’character and spirit.The excavation of ideological and political elements in bridge engineering courses should comprehensively consider the dependent subject of ideological and political elements,the source of cases,the depth of excavation,the trade-offs between courses,the commonality and multifaceted nature of ideological and political elements,as well as the two ways of ideological and political elements integration.Ideological and political elements should be integrated into all stages of classroom lectures,course assignments,final examinations,course design,discipline competitions,school-enterprise cooperation,etc.,so as to achieve the effect of educating people in the whole process.展开更多
This article focuses on bridge testing technologies in highway construction and expansion projects.It provides an overview of the inspection process for bridges in highway reconstruction and expansion projects,the mai...This article focuses on bridge testing technologies in highway construction and expansion projects.It provides an overview of the inspection process for bridges in highway reconstruction and expansion projects,the main inspections,and strategies for improving the quality of inspections.Relevant units should conduct bridge inspections using appearance inspections,special inspections,and bearing capacity assessments in highway reconstruction and expansion projects.To effectively improve testing quality,relevant units should also focus on establishing and improving testing standards,strengthening material testing,and improving the overall quality of the testing personnel.This research aims to enhance the quality of highway reconstruction and expansion projects by supporting the sensible application of bridge inspection technology.展开更多
A bridge project is taken as an example to analyze the application of bearing capacity detection and evaluation.This article provides a basic overview of the project,the application of bearing capacity detection techn...A bridge project is taken as an example to analyze the application of bearing capacity detection and evaluation.This article provides a basic overview of the project,the application of bearing capacity detection technology,and the bearing capacity assessment analysis.It is hoped that this analysis can provide a scientific reference for the load-bearing capacity detection and evaluation work in bridge engineering projects,thereby achieving a scientific assessment of the overall load-bearing capacity of the bridge engineering structure.展开更多
Effective application of digital integrated management and maintenance systems is essential for successful operation and maintenance management of bridge projects.This article analyzes the application strategy of such...Effective application of digital integrated management and maintenance systems is essential for successful operation and maintenance management of bridge projects.This article analyzes the application strategy of such systems.It provides an overview of comprehensive digital management and maintenance of bridges,an analysis of the basic components of the integrated management and maintenance system,and its application strategies.This study aims to offer guidance for the application of the system and to improve the quality of modern bridge engineering management and maintenance work.展开更多
Engineering surveying is an important course for road and bridge engineering technology majors in higher vocational colleges.With the advancement of science and technology,engineering surveying technology is also cons...Engineering surveying is an important course for road and bridge engineering technology majors in higher vocational colleges.With the advancement of science and technology,engineering surveying technology is also constantly developing,so the theoretical knowledge and professional skills that students need to master are also becoming increasingly complicated.To stimulate the students’interest in learning the course,it is necessary to continuously introduce innovative teaching methods into the course.In this paper,the importance of teaching innovation in engineering surveying courses of road and bridge engineering technology majors in higher vocational colleges and the knowledge system that students need to master are analyzed.Subsequently,innovative strategies are proposed to help improve the students’mastery of engineering surveying.展开更多
Bridge engineering is an important part of basic engineering in today’s transportation field,and its quality and performance have a vital impact on the improvement and development of modern transportation engineering...Bridge engineering is an important part of basic engineering in today’s transportation field,and its quality and performance have a vital impact on the improvement and development of modern transportation engineering.With the continuous development of transportation engineering,the maintenance and reinforcement of existing bridges are also being given more emphasis.In order to scientifically evaluate the effectiveness of bridge maintenance and reinforcement,this paper analyzes its detection and evaluation,including the significance,key points,and main methods of detection and evaluation.Therefore,this analysis aim to provide some reference for the maintenance and reinforcement and the quality improvement of bridge engineering.展开更多
Asphalt pavement is currently one of the main components in the construction of roads and bridges.However,from a practical point of view,various quality problems are prone to occur in the surface layer of asphalt pave...Asphalt pavement is currently one of the main components in the construction of roads and bridges.However,from a practical point of view,various quality problems are prone to occur in the surface layer of asphalt pavement,which will lead to the poor overall quality of road and bridge projects.Therefore,it should be applied reasonably.Advanced testing technologies are used to test the mixture quality,compaction,segregation,thickness,and other aspects of the asphalt pavement surface layer,so as to improve the quality of the asphalt pavement surface layer,and then improve the overall quality of road and bridge construction.Therefore,this paper mainly analyzes the technologies for asphalt pavement surface layer testing in road and bridge engineering construction.展开更多
During the Victorian Age,when the results of ambitious engineering radically transformed the principles of construction,photography proved to be a faithful and indispensable witness.This is plainly seen in the magnifi...During the Victorian Age,when the results of ambitious engineering radically transformed the principles of construction,photography proved to be a faithful and indispensable witness.This is plainly seen in the magnificent enterprise to build the railway bridge over the Forth River,accurately captured by the lens of the photographer and engineer Evelyn George Carey,whose excellent work to record those events is without equal.His almost daily annotations were free from symbolic meaning and monumental tendencies:it was the bridge itself that held the most important role.In the form of an experiment it was decided to illustrate the principle of the cantilever at the Royal Institution in 1887.It was during that particular circumstance that Carey produced the famous photographic image of the Human Cantilever.Carey presents to the observer an encyclopaedic array of representations and helps to truly visualise engineering.展开更多
Road and bridge engineering is an indispensable part of socialist economic construction in China, whose construction quality significantly affects the infrastructure construction level in the whole society. To meet th...Road and bridge engineering is an indispensable part of socialist economic construction in China, whose construction quality significantly affects the infrastructure construction level in the whole society. To meet the rapid economic development of various regions, construction scale and quantity of road and bridge engineering have been continuously expanded and increased, therefore, higher requirements for construction quality and construction standard are also presented. During the construction of road and bridge engineering, concrete crack is a key problem which affects the construction quality. In this regard, this paper analyzes cause and prevention measures of concrete cracks during the construction of road and bridge engineering, and hopes to provide construction personnel with valuable references.展开更多
In recent years, the rapid growth of the number of private cars has greatly increased the traffic pressure, so the quality of roads and bridges should be further improved. The paper expounds the related matters of roa...In recent years, the rapid growth of the number of private cars has greatly increased the traffic pressure, so the quality of roads and bridges should be further improved. The paper expounds the related matters of road and bridge engineering from three aspects. Firstly, it expounds the construction principles of road and bridge engineering, which are regarded as the theoretical basis of follow-up research. Secondly, it analyzes the common diseases of road and bridge engineering, including bridgehead damage, rein-forcement corrosion, and subgrade uneven settlement, etc. Finally, it puts forward the construction treatment technology of road and bridge engineering on the basis of the construction principles and taking the common diseases as reference.展开更多
A new mechanics model, which reveals additional longitudinal force transmission between the continuously welded rails and the bridges, is established on the fact that the influence of the mutual relative displacement ...A new mechanics model, which reveals additional longitudinal force transmission between the continuously welded rails and the bridges, is established on the fact that the influence of the mutual relative displacement (among) the rail, the sleeper and the beam is taken into account. An example is presented and numerical results are compared. The results show that the additional longitudinal forces calculated with the new model are less than those of the previous, especially in the case of the flexible pier bridges. The new model is also suitable for the analysis of the additional longitudinal force transmission between rails and bridges of ballastless track with small resistance fasteners without taking the sleeper displacement into account, and compared with the ballast bridges, the ballastless bridges have a much stronger additional longitudinal force transmission between the continuously welded rails and the bridges.展开更多
To study the stiffness distribution of girder and the method to identify modal parameters of cable-stayed bridge, a simplified dynamical finite element method model named three beams model was established for the gird...To study the stiffness distribution of girder and the method to identify modal parameters of cable-stayed bridge, a simplified dynamical finite element method model named three beams model was established for the girder with double ribs. Based on the simplified model four stiffness formulae were deduced according to Hamilton principle. These formulae reflect well the contribution of the flexural, shearing, free torsion and restricted torsion deformation, respectively. An identification method about modal parameters was put forward by combining method of peak value and power spectral density according to modal test under ambient excitation. The dynamic finite element method analysis and modal test were carried out in a long-span concrete cable-stayed bridge. The results show that the errors of frequencies between theoretical analysis and test results are less than 10% mostly, and the most important modal parameters for cable-stayed bridge are determined to be the longitudinal floating mode, the first vertical flexural mode and the first torsional mode, which demonstrate that the method of stiffness distribution for three beams model is accurate and method to identify modal parameters is effective under ambient excitation modal test.展开更多
The steadily growing traffic load has resulted in lots of bridge collapse events over the past decades, especiallyfor short-to-medium span bridges. This study investigated probabilistic and dynamic traffic load effect...The steadily growing traffic load has resulted in lots of bridge collapse events over the past decades, especiallyfor short-to-medium span bridges. This study investigated probabilistic and dynamic traffic load effects on shortto-medium span bridges using practical heavy traffic data in China. Mathematical formulations for traffic-bridgecoupled vibration and probabilistic extrapolation were derived. A framework for extrapolating probabilistic anddynamic traffic load effect was presented to conduct an efficient and accurate extrapolation. An equivalent dynamicwheel load model was demonstrated to be feasible for short-to-medium span bridges. Numerical studies of twotypes of simply-supported bridges were conducted based on site-specific traffic monitoring data. Numerical resultsshow that the simulated samples and fitting lines follow a curve line in the Gumbel distribution coordinate system. Itcan be assumed that dynamic traffic load effects follow Gaussian distribution and the extreme value follows Gumbeldistribution. The equivalent probabilistic amplification factor is smaller than the individual dynamic amplificationfactor, which might be due to the variability of individual samples. Eurocode 1 is the most conservative specificationon vehicle load models, followed by the BS5400 specification. The D60-2015 specification in China and ASSHTOspecification provide lower conservative traffic load models.展开更多
Laminated elastomeric bearings have been widely used for small-to-medium-span highway bridges in China, in which concrete shear keys are set transversely to prohibit large girder displacement. To evaluate bridge seism...Laminated elastomeric bearings have been widely used for small-to-medium-span highway bridges in China, in which concrete shear keys are set transversely to prohibit large girder displacement. To evaluate bridge seismic responses more accurately, proper analytical models of bearings and shear keys should be developed. Based on a series of cyclic loading experiments and analyses, rational analytical models of laminated elastomeric bearings and shear keys, which can consider mechanical degradation, were developed. The effect of the mechanical degradation was investigated by examining the seismic response of a small-to-medium-span bridge in the transverse direction under a wide range of peak ground accelerations(PGA). The damage mechanism for small-to-medium-span highway bridges was determined, which can explain the seismic damage investigation during earthquakes in recent years. The experimental results show that the mechanical properties of laminated elastomeric bearings will degrade due to friction sliding, but the degree of decrease is dependent upon the influencing parameters. It can be concluded that the mechanical degradation of laminated elastomeric bearings and shear keys play an important role in the seismic response of bridges. The degradation of mechanical properties of laminated elastomeric bearings and shear keys should be included to evaluate more precise bridge seismic performance.展开更多
The estuary and coastal zone are the key areas for socio-economic development,and they are also the important channels for pollutants transported to the sea.The construction of the Jiaozhou Bay Bridge changed the hydr...The estuary and coastal zone are the key areas for socio-economic development,and they are also the important channels for pollutants transported to the sea.The construction of the Jiaozhou Bay Bridge changed the hydrodynamic condition of the bay,which made the self-purification capacity of the bay weakened and the pollution in the estuary and adjacent coastal zone become more serious.In this study,55 surface sediment samples were collected from the three seriously polluted estuaries and the adjacent coastal zone of Jiaozhou Bay to comprehensively study how the benthic foraminifera response to heavy metal pollution and human engineering,and to assess the ecological risks of the bay.A total of 80 species,belonging to 42 genera,were identified in this study.The results showed that Cu,Pb,Cr,Hg,Zn,and As had low to median ecological risks in the study area which would definitely affect the ecological system.The construction of the Jiaozhou Bay Bridge has resulted in pollutants accumulated at the river mouth of Loushan River,which has adverse effects on the survival and growth of benthic foraminifera.The lowest population density and diversity as well as the highest FAI(Foraminiferal Abnormality Index)and FMI(Foraminiferal Monitoring Index)occurred at Loushan River Estuary which indicated that the ecological environment of the northeastern part of Jiaozhou Bay(Loushan River Estuary)had been seriously damaged.Licun River and Haipo River estuaries and the adjacent coastal zone were slightly polluted and had low ecological risk.As a consequence,it suggested that the supervision of industrial and domestic waste discharge and the protection of the ecological environment in northeast Jiaozhou Bay should be paid more attention.展开更多
The background to this research was a flooding incident that occurred in Bridgend, Co. Donegal, Ireland in August 2017. While several properties were flooded, a flooding case study of a single dwelling house adjacent ...The background to this research was a flooding incident that occurred in Bridgend, Co. Donegal, Ireland in August 2017. While several properties were flooded, a flooding case study of a single dwelling house adjacent to the Bridgend River at Riverdale, Bunamayne, Co. Donegal, Ireland is used herein. For this study the flooded site shall be referred to as the “Hegarty property”. A structure in the form of a stone arched culvert is located directly adjacent to the two-storey detached dwelling house on the Hegarty Property. While the culvert is referred to locally as a bridge, within this research the word culvert will be used in connection with the structure. The culvert has a concrete surrounded utility (watermain) crossing at a gradient below the culvert soffit on the upstream face of the structure. The utility obstructed flow through the culvert and contributed to the flooding event. Given the implication of climate change and the increased probability of more extreme flooding events, it was decided to explore the case study to ascertain the factors that contribute to flooding events when utilities are positioned at culvert or bridge structures. This work was completed to assist undergraduate students, researchers, and local authorities in a relatively unknown area of flood causation.展开更多
In order to realize the in-situ evaluation of reinforced concrete bridges subjected to fatigue for a long time or after earthquake, an evaluation method for cumulative damage of concrete structures based on unloading ...In order to realize the in-situ evaluation of reinforced concrete bridges subjected to fatigue for a long time or after earthquake, an evaluation method for cumulative damage of concrete structures based on unloading elastic modulus was proposed. First, according to the concrete stress-strain curve and the statistical relationship between residual strain and cumulative strain, the calculation method of static equivalent strain and residual strain concrete based on unloading elastic modulus and the method for estimating the strength of concrete after damage were proposed. The detailed steps of field test and analysis and the practical damage indicators of residual strain were given. Then, the evaluation method of existing stress and strain of Reinforced Concrete Bridge under dead load and the concept of “equivalent dead load bending moment” were put forward. On this basis, the paper analyzed the root cause of the decrease of bearing capacity of Reinforced Concrete Bridge after fatigue damage, and pointed out that the equivalent strain or residual strain of reinforced concrete increases under the fatigue effect, which led to the decreasing of actual live moment and deformation performance while the ultimate load-carrying capacity remained constant or very little decrease. The evaluation method of structure residual capacity was given, and through comparative analysis of eight T reinforced concrete beams that had been in service for 35 years with the static failure tests, the effectiveness of the method was verified.展开更多
In the maintenance work of highway and bridge engineering structures,the fracture delay of high-strength bolts is a content that needs to be focused on and researched.Based on this,the paper analyzes the fracture dela...In the maintenance work of highway and bridge engineering structures,the fracture delay of high-strength bolts is a content that needs to be focused on and researched.Based on this,the paper analyzes the fracture delay of high-strength bolts in highway bridge maintenance,including an overview of the fundamental research on fracture delay and related specific studies.It is hoped that this study can provide scientific reference for the reasonable maintenance of high-strength bolts,so as to ensure the overall maintenance effect of highway bridge projects.展开更多
文摘Cracking during construction is a common occurrence in modern bridge engineering that can directly impact the overall safety of the bridge.Therefore,it is essential to focus on preventing and controlling cracks.As the construction technology for bridge engineering has evolved,the internal quality of construction has significantly improved.However,the appearance quality remains a crucial factor that reflects the technical expertise of a construction company.Therefore,minimizing cracks and improving the appearance quality of concrete are critical issues that require the attention of construction units,supervision departments,and construction companies.This article will analyze the causes of cracking and suggest corresponding prevention and treatment methods.
文摘This article analyzes the application strategies of shotcrete anchor support technology using a highway bridge-tunnel construction project as an example.The article covers various strategies,including support plan formulation,mortar shotcrete anchor construction,grid steel frame construction,steel mesh construction,and concrete support construction.This analysis aims to provide a guideline for those interested in applying this technology and improving the quality and safety of highway bridges and tunnels construction.
基金Chongqing Institute of Engineering Ideological and Political Teaching Demonstration Course Construction Project(KC20230010)。
文摘The questions of what kind of individuals university education should cultivate,how to cultivate them,and for whom they are being trained are pressing issues that require immediate solutions.Implementing ideological and political education is a fundamental way to address these challenges.Integrating political education into professional courses is just as important as imparting knowledge,fostering interest,transmitting values,and shaping students’character and spirit.The excavation of ideological and political elements in bridge engineering courses should comprehensively consider the dependent subject of ideological and political elements,the source of cases,the depth of excavation,the trade-offs between courses,the commonality and multifaceted nature of ideological and political elements,as well as the two ways of ideological and political elements integration.Ideological and political elements should be integrated into all stages of classroom lectures,course assignments,final examinations,course design,discipline competitions,school-enterprise cooperation,etc.,so as to achieve the effect of educating people in the whole process.
文摘This article focuses on bridge testing technologies in highway construction and expansion projects.It provides an overview of the inspection process for bridges in highway reconstruction and expansion projects,the main inspections,and strategies for improving the quality of inspections.Relevant units should conduct bridge inspections using appearance inspections,special inspections,and bearing capacity assessments in highway reconstruction and expansion projects.To effectively improve testing quality,relevant units should also focus on establishing and improving testing standards,strengthening material testing,and improving the overall quality of the testing personnel.This research aims to enhance the quality of highway reconstruction and expansion projects by supporting the sensible application of bridge inspection technology.
文摘A bridge project is taken as an example to analyze the application of bearing capacity detection and evaluation.This article provides a basic overview of the project,the application of bearing capacity detection technology,and the bearing capacity assessment analysis.It is hoped that this analysis can provide a scientific reference for the load-bearing capacity detection and evaluation work in bridge engineering projects,thereby achieving a scientific assessment of the overall load-bearing capacity of the bridge engineering structure.
文摘Effective application of digital integrated management and maintenance systems is essential for successful operation and maintenance management of bridge projects.This article analyzes the application strategy of such systems.It provides an overview of comprehensive digital management and maintenance of bridges,an analysis of the basic components of the integrated management and maintenance system,and its application strategies.This study aims to offer guidance for the application of the system and to improve the quality of modern bridge engineering management and maintenance work.
文摘Engineering surveying is an important course for road and bridge engineering technology majors in higher vocational colleges.With the advancement of science and technology,engineering surveying technology is also constantly developing,so the theoretical knowledge and professional skills that students need to master are also becoming increasingly complicated.To stimulate the students’interest in learning the course,it is necessary to continuously introduce innovative teaching methods into the course.In this paper,the importance of teaching innovation in engineering surveying courses of road and bridge engineering technology majors in higher vocational colleges and the knowledge system that students need to master are analyzed.Subsequently,innovative strategies are proposed to help improve the students’mastery of engineering surveying.
文摘Bridge engineering is an important part of basic engineering in today’s transportation field,and its quality and performance have a vital impact on the improvement and development of modern transportation engineering.With the continuous development of transportation engineering,the maintenance and reinforcement of existing bridges are also being given more emphasis.In order to scientifically evaluate the effectiveness of bridge maintenance and reinforcement,this paper analyzes its detection and evaluation,including the significance,key points,and main methods of detection and evaluation.Therefore,this analysis aim to provide some reference for the maintenance and reinforcement and the quality improvement of bridge engineering.
文摘Asphalt pavement is currently one of the main components in the construction of roads and bridges.However,from a practical point of view,various quality problems are prone to occur in the surface layer of asphalt pavement,which will lead to the poor overall quality of road and bridge projects.Therefore,it should be applied reasonably.Advanced testing technologies are used to test the mixture quality,compaction,segregation,thickness,and other aspects of the asphalt pavement surface layer,so as to improve the quality of the asphalt pavement surface layer,and then improve the overall quality of road and bridge construction.Therefore,this paper mainly analyzes the technologies for asphalt pavement surface layer testing in road and bridge engineering construction.
文摘During the Victorian Age,when the results of ambitious engineering radically transformed the principles of construction,photography proved to be a faithful and indispensable witness.This is plainly seen in the magnificent enterprise to build the railway bridge over the Forth River,accurately captured by the lens of the photographer and engineer Evelyn George Carey,whose excellent work to record those events is without equal.His almost daily annotations were free from symbolic meaning and monumental tendencies:it was the bridge itself that held the most important role.In the form of an experiment it was decided to illustrate the principle of the cantilever at the Royal Institution in 1887.It was during that particular circumstance that Carey produced the famous photographic image of the Human Cantilever.Carey presents to the observer an encyclopaedic array of representations and helps to truly visualise engineering.
文摘Road and bridge engineering is an indispensable part of socialist economic construction in China, whose construction quality significantly affects the infrastructure construction level in the whole society. To meet the rapid economic development of various regions, construction scale and quantity of road and bridge engineering have been continuously expanded and increased, therefore, higher requirements for construction quality and construction standard are also presented. During the construction of road and bridge engineering, concrete crack is a key problem which affects the construction quality. In this regard, this paper analyzes cause and prevention measures of concrete cracks during the construction of road and bridge engineering, and hopes to provide construction personnel with valuable references.
文摘In recent years, the rapid growth of the number of private cars has greatly increased the traffic pressure, so the quality of roads and bridges should be further improved. The paper expounds the related matters of road and bridge engineering from three aspects. Firstly, it expounds the construction principles of road and bridge engineering, which are regarded as the theoretical basis of follow-up research. Secondly, it analyzes the common diseases of road and bridge engineering, including bridgehead damage, rein-forcement corrosion, and subgrade uneven settlement, etc. Finally, it puts forward the construction treatment technology of road and bridge engineering on the basis of the construction principles and taking the common diseases as reference.
文摘A new mechanics model, which reveals additional longitudinal force transmission between the continuously welded rails and the bridges, is established on the fact that the influence of the mutual relative displacement (among) the rail, the sleeper and the beam is taken into account. An example is presented and numerical results are compared. The results show that the additional longitudinal forces calculated with the new model are less than those of the previous, especially in the case of the flexible pier bridges. The new model is also suitable for the analysis of the additional longitudinal force transmission between rails and bridges of ballastless track with small resistance fasteners without taking the sleeper displacement into account, and compared with the ballast bridges, the ballastless bridges have a much stronger additional longitudinal force transmission between the continuously welded rails and the bridges.
基金Project(50608008) supported by the National Natural Science Foundation of Chinaproject(20050536002) supported by the Specialized Research Fund for the Doctoral Program of Higher Education
文摘To study the stiffness distribution of girder and the method to identify modal parameters of cable-stayed bridge, a simplified dynamical finite element method model named three beams model was established for the girder with double ribs. Based on the simplified model four stiffness formulae were deduced according to Hamilton principle. These formulae reflect well the contribution of the flexural, shearing, free torsion and restricted torsion deformation, respectively. An identification method about modal parameters was put forward by combining method of peak value and power spectral density according to modal test under ambient excitation. The dynamic finite element method analysis and modal test were carried out in a long-span concrete cable-stayed bridge. The results show that the errors of frequencies between theoretical analysis and test results are less than 10% mostly, and the most important modal parameters for cable-stayed bridge are determined to be the longitudinal floating mode, the first vertical flexural mode and the first torsional mode, which demonstrate that the method of stiffness distribution for three beams model is accurate and method to identify modal parameters is effective under ambient excitation modal test.
基金The research was supported by the National Science Foundation of China(Grant No.51908068)the support from the Key Laboratory of Bridge Engineering Safety Control by Department of Education(Changsha University of Science&Technology).Industry Key Laboratory of Traffic Infrastructure Security Risk Management in Changsha University of Science and Technology(Grant Nos.19KF03,19KB02)Open Fund of Engineering Research Center of Catastrophic Prophylaxis and Treatment of Road&Traffic Safety of Ministry of Education(Grant No.KFJ190403).
文摘The steadily growing traffic load has resulted in lots of bridge collapse events over the past decades, especiallyfor short-to-medium span bridges. This study investigated probabilistic and dynamic traffic load effects on shortto-medium span bridges using practical heavy traffic data in China. Mathematical formulations for traffic-bridgecoupled vibration and probabilistic extrapolation were derived. A framework for extrapolating probabilistic anddynamic traffic load effect was presented to conduct an efficient and accurate extrapolation. An equivalent dynamicwheel load model was demonstrated to be feasible for short-to-medium span bridges. Numerical studies of twotypes of simply-supported bridges were conducted based on site-specific traffic monitoring data. Numerical resultsshow that the simulated samples and fitting lines follow a curve line in the Gumbel distribution coordinate system. Itcan be assumed that dynamic traffic load effects follow Gaussian distribution and the extreme value follows Gumbeldistribution. The equivalent probabilistic amplification factor is smaller than the individual dynamic amplificationfactor, which might be due to the variability of individual samples. Eurocode 1 is the most conservative specificationon vehicle load models, followed by the BS5400 specification. The D60-2015 specification in China and ASSHTOspecification provide lower conservative traffic load models.
基金Project of China International Science and Technology Cooperation under Grant No.2009DFA82480Science and Technology Project of Communications’ Construction in Western China,MOC under Grant No.2009318223094
文摘Laminated elastomeric bearings have been widely used for small-to-medium-span highway bridges in China, in which concrete shear keys are set transversely to prohibit large girder displacement. To evaluate bridge seismic responses more accurately, proper analytical models of bearings and shear keys should be developed. Based on a series of cyclic loading experiments and analyses, rational analytical models of laminated elastomeric bearings and shear keys, which can consider mechanical degradation, were developed. The effect of the mechanical degradation was investigated by examining the seismic response of a small-to-medium-span bridge in the transverse direction under a wide range of peak ground accelerations(PGA). The damage mechanism for small-to-medium-span highway bridges was determined, which can explain the seismic damage investigation during earthquakes in recent years. The experimental results show that the mechanical properties of laminated elastomeric bearings will degrade due to friction sliding, but the degree of decrease is dependent upon the influencing parameters. It can be concluded that the mechanical degradation of laminated elastomeric bearings and shear keys play an important role in the seismic response of bridges. The degradation of mechanical properties of laminated elastomeric bearings and shear keys should be included to evaluate more precise bridge seismic performance.
基金funded by the National Natural Science Foundation of China(41376079,41276060)the projects of the China Geological Survey and the Marine Geology Survey(DD20160137,DD20190205 and GZH200900501)+1 种基金the Foundation of the Shandong Provincial Key Laboratory of Marine Ecology and Environment&Disaster Prevention(201304)the Student Research Developing Program(SRDP)of Ocean University of China。
文摘The estuary and coastal zone are the key areas for socio-economic development,and they are also the important channels for pollutants transported to the sea.The construction of the Jiaozhou Bay Bridge changed the hydrodynamic condition of the bay,which made the self-purification capacity of the bay weakened and the pollution in the estuary and adjacent coastal zone become more serious.In this study,55 surface sediment samples were collected from the three seriously polluted estuaries and the adjacent coastal zone of Jiaozhou Bay to comprehensively study how the benthic foraminifera response to heavy metal pollution and human engineering,and to assess the ecological risks of the bay.A total of 80 species,belonging to 42 genera,were identified in this study.The results showed that Cu,Pb,Cr,Hg,Zn,and As had low to median ecological risks in the study area which would definitely affect the ecological system.The construction of the Jiaozhou Bay Bridge has resulted in pollutants accumulated at the river mouth of Loushan River,which has adverse effects on the survival and growth of benthic foraminifera.The lowest population density and diversity as well as the highest FAI(Foraminiferal Abnormality Index)and FMI(Foraminiferal Monitoring Index)occurred at Loushan River Estuary which indicated that the ecological environment of the northeastern part of Jiaozhou Bay(Loushan River Estuary)had been seriously damaged.Licun River and Haipo River estuaries and the adjacent coastal zone were slightly polluted and had low ecological risk.As a consequence,it suggested that the supervision of industrial and domestic waste discharge and the protection of the ecological environment in northeast Jiaozhou Bay should be paid more attention.
文摘The background to this research was a flooding incident that occurred in Bridgend, Co. Donegal, Ireland in August 2017. While several properties were flooded, a flooding case study of a single dwelling house adjacent to the Bridgend River at Riverdale, Bunamayne, Co. Donegal, Ireland is used herein. For this study the flooded site shall be referred to as the “Hegarty property”. A structure in the form of a stone arched culvert is located directly adjacent to the two-storey detached dwelling house on the Hegarty Property. While the culvert is referred to locally as a bridge, within this research the word culvert will be used in connection with the structure. The culvert has a concrete surrounded utility (watermain) crossing at a gradient below the culvert soffit on the upstream face of the structure. The utility obstructed flow through the culvert and contributed to the flooding event. Given the implication of climate change and the increased probability of more extreme flooding events, it was decided to explore the case study to ascertain the factors that contribute to flooding events when utilities are positioned at culvert or bridge structures. This work was completed to assist undergraduate students, researchers, and local authorities in a relatively unknown area of flood causation.
文摘In order to realize the in-situ evaluation of reinforced concrete bridges subjected to fatigue for a long time or after earthquake, an evaluation method for cumulative damage of concrete structures based on unloading elastic modulus was proposed. First, according to the concrete stress-strain curve and the statistical relationship between residual strain and cumulative strain, the calculation method of static equivalent strain and residual strain concrete based on unloading elastic modulus and the method for estimating the strength of concrete after damage were proposed. The detailed steps of field test and analysis and the practical damage indicators of residual strain were given. Then, the evaluation method of existing stress and strain of Reinforced Concrete Bridge under dead load and the concept of “equivalent dead load bending moment” were put forward. On this basis, the paper analyzed the root cause of the decrease of bearing capacity of Reinforced Concrete Bridge after fatigue damage, and pointed out that the equivalent strain or residual strain of reinforced concrete increases under the fatigue effect, which led to the decreasing of actual live moment and deformation performance while the ultimate load-carrying capacity remained constant or very little decrease. The evaluation method of structure residual capacity was given, and through comparative analysis of eight T reinforced concrete beams that had been in service for 35 years with the static failure tests, the effectiveness of the method was verified.
文摘In the maintenance work of highway and bridge engineering structures,the fracture delay of high-strength bolts is a content that needs to be focused on and researched.Based on this,the paper analyzes the fracture delay of high-strength bolts in highway bridge maintenance,including an overview of the fundamental research on fracture delay and related specific studies.It is hoped that this study can provide scientific reference for the reasonable maintenance of high-strength bolts,so as to ensure the overall maintenance effect of highway bridge projects.