Stress equilibrium equations, boundary- and continuity-conditions were used to establish a theoretical model of progressive debonding with friction at the debonded interface. On a basis of the minimum complementary en...Stress equilibrium equations, boundary- and continuity-conditions were used to establish a theoretical model of progressive debonding with friction at the debonded interface. On a basis of the minimum complementary energy principle, an expression for the energy release rate G was derived to explore the interfacial fracture properties. An interfacial debonding crite- rion G≥Γi was introduced to determine the critical debond length and the bridging law. Numerical calculation results for fi- ber-reinforced composite SCS-6/Ti-6Al-4V were compared with those obtained by using the shear-lag models.展开更多
基金Project (No. M503095) supported by the Natural Science Foundation of Zhejiang Province, China
文摘Stress equilibrium equations, boundary- and continuity-conditions were used to establish a theoretical model of progressive debonding with friction at the debonded interface. On a basis of the minimum complementary energy principle, an expression for the energy release rate G was derived to explore the interfacial fracture properties. An interfacial debonding crite- rion G≥Γi was introduced to determine the critical debond length and the bridging law. Numerical calculation results for fi- ber-reinforced composite SCS-6/Ti-6Al-4V were compared with those obtained by using the shear-lag models.