A two-dimensional mathematical model is used to simulate the influence of water flow on the piers of a bridge for different incidence angles.In particular,a finite volume method is used to discretize the Navier-Stokes...A two-dimensional mathematical model is used to simulate the influence of water flow on the piers of a bridge for different incidence angles.In particular,a finite volume method is used to discretize the Navier-Stokes control equations and calculate the circumferential pressure coefficient distribution on the bridge piers’surface.The results show that the deflection of the flow is non-monotonic.It first increases and then decreases with an increase in the skew angle.展开更多
Experiments are carried out in an "S-shaped" flume in the laboratory under both open flow and ice-jammed conditions to study the impacts of bridge piers in a bend channel on the variation of the water level. The var...Experiments are carried out in an "S-shaped" flume in the laboratory under both open flow and ice-jammed conditions to study the impacts of bridge piers in a bend channel on the variation of the water level. The variations of the water level under the ice jammed condition with bridge piers are compared to those without bridge piers in an 180° bend channel. Results indicate that the bridge piers in the S-shaped channel have obvious impacts on the ice accumulation and the water level. The increment of the water level with the presence of the bridge piers is less than that without the bridge piers in the channel. Different arrangements of the bridge piers result in different increments of the water level. When one bridge pier is installed in the straight section of the channel(between 2 bends) and another one at the bend apex(for a convex bank), the increment of the water level during the equilibrium ice jammed period is between that with a single bridge pier located in the straight section of the bend channel and that with a single bridge pier located at the bend apex. It is also shown that the increment of the water level during the equilibrium ice jammed period increases with the increase of the average thickness of the ice jams.展开更多
库水位循环作用下,库岸边坡岩土体物理力学性质劣化,引起岸坡变形、滑移,将对桥梁基础、桥墩及上部结构产生不同程度损伤,甚至会导致桥梁上部结构落梁、垮塌。针对重庆万州长江二桥库岸边坡失稳致灾问题,采用FEM-SPH(finite element met...库水位循环作用下,库岸边坡岩土体物理力学性质劣化,引起岸坡变形、滑移,将对桥梁基础、桥墩及上部结构产生不同程度损伤,甚至会导致桥梁上部结构落梁、垮塌。针对重庆万州长江二桥库岸边坡失稳致灾问题,采用FEM-SPH(finite element method-smoothed particle hydrodynamics)转换耦合算法建立了岸坡-桥梁三维有限元模型,结合桥位处地质勘测数据模拟了变动水位条件下岸坡变形、滑移、失稳全过程,揭示了岸坡滑移与桥梁桩基相互作用机理,研究了桥墩偏位规律及下部结构失效模式。结果表明:以滑动带有限元网格悉数转换为SPH(smoothed particle hydrodynamics)粒子作为岸坡失稳判据,FEM-SPH转换耦合算法能够更直观、准确地模拟库岸边坡从变形、滑移至失稳全过程;桥位处岸坡将在第16、20次水位升降循环过程中发生失稳破坏;随着岸坡变形、滑移、失稳演化,桥墩偏位呈“缓增-激增”的变化趋势;岸坡发生第2次失稳时,桩基础在土-岩交界面上部发生剪切破坏,破坏面与水平面夹角约为60°。展开更多
文摘A two-dimensional mathematical model is used to simulate the influence of water flow on the piers of a bridge for different incidence angles.In particular,a finite volume method is used to discretize the Navier-Stokes control equations and calculate the circumferential pressure coefficient distribution on the bridge piers’surface.The results show that the deflection of the flow is non-monotonic.It first increases and then decreases with an increase in the skew angle.
基金Project supported by the National Natural Science Foundation of China(Grant No.51379054)
文摘Experiments are carried out in an "S-shaped" flume in the laboratory under both open flow and ice-jammed conditions to study the impacts of bridge piers in a bend channel on the variation of the water level. The variations of the water level under the ice jammed condition with bridge piers are compared to those without bridge piers in an 180° bend channel. Results indicate that the bridge piers in the S-shaped channel have obvious impacts on the ice accumulation and the water level. The increment of the water level with the presence of the bridge piers is less than that without the bridge piers in the channel. Different arrangements of the bridge piers result in different increments of the water level. When one bridge pier is installed in the straight section of the channel(between 2 bends) and another one at the bend apex(for a convex bank), the increment of the water level during the equilibrium ice jammed period is between that with a single bridge pier located in the straight section of the bend channel and that with a single bridge pier located at the bend apex. It is also shown that the increment of the water level during the equilibrium ice jammed period increases with the increase of the average thickness of the ice jams.