We discussed the decrease in residual stress,precipitation evolution,and mechanical properties of GH4151 alloy in different annealing temperatures,which were studied by the scanning electron microscope(SEM),high-resol...We discussed the decrease in residual stress,precipitation evolution,and mechanical properties of GH4151 alloy in different annealing temperatures,which were studied by the scanning electron microscope(SEM),high-resolution transmission electron microscopy(HRTEM),and electron backscatter diffraction(EBSD).The findings reveal that annealing processing has a significant impact on diminishing residual stresses.As the annealing temperature rose from 950 to 1150℃,the majority of the residual stresses were relieved from 60.1 MPa down to 10.9 MPa.Moreover,the stress relaxation mechanism transitioned from being mainly controlled by dislocation slip to a combination of dislocation slip and grain boundary migration.Meanwhile,the annealing treatment promotes the decomposition of the Laves,accompanied by the precipitation ofμ-(Mo_(6)Co_(7))starting at 950℃ and reaching a maximum value at 1050℃.The tensile strength and plasticity of the annealing alloy at 1150℃ reached the maximum(1394 MPa,56.1%)which was 131%,200%fold than those of the as-cast alloy(1060 MPa,26.6%),but the oxidation process in the alloy was accelerated at 1150℃.The enhancement in durability and flexibility is primarily due to the dissolution of the brittle phase,along with the shape and dispersal of theγ′phase.展开更多
Ultra fine-grained pure metals and their alloys have high strength and low ductility.In this study,cryorolling under different strains followed by low-temperature short-time annealing was used to fabricate pure nickel...Ultra fine-grained pure metals and their alloys have high strength and low ductility.In this study,cryorolling under different strains followed by low-temperature short-time annealing was used to fabricate pure nickel sheets combining high strength with good ductility.The results show that,for different cryorolling strains,the uniform elongation was greatly increased without sacrificing the strength after annealing.A yield strength of 607 MPa and a uniform elongation of 11.7%were obtained after annealing at a small cryorolling strain(ε=0.22),while annealing at a large cryorolling strain(ε=1.6)resulted in a yield strength of 990 MPa and a uniform elongation of 6.4%.X-ray diffraction(XRD),transmission electron microscopy(TEM),scanning electron microscopy(SEM),and electron backscattered diffraction(EBSD)were used to characterize the microstructure of the specimens and showed that the high strength could be attributed to strain hardening during cryorolling,with an additional contribution from grain refinement and the formation of dislocation walls.The high ductility could be attributed to annealing twins and micro-shear bands during stretching,which improved the strain hardening capacity.The results show that the synergistic effect of strength and ductility can be regulated through low-temperature short-time annealing with different cryorolling strains,which provides a new reference for the design of future thermo-mechanical processes.展开更多
The effects of the gravitational redshift of gravitons upon spiral galaxy rotation energy are compared to the standard mass to light analyses in obtaining rotation curves. The derivation of the total baryonic matter c...The effects of the gravitational redshift of gravitons upon spiral galaxy rotation energy are compared to the standard mass to light analyses in obtaining rotation curves. The derivation of the total baryonic matter compares well with the standard theory and the rotation velocity is matched to a high precision. The stellar mass distributions obtained from the fit with graviton energy loss are used to derive the surface brightness magnitudes for the galaxies, which agree well with the observed measurements. In a new field of investigation, the graviton theory is applied to the observations of gravitational lenses. The results of these applications of the theory suggest that it can augment the standard methods and may eliminate the need for dark matter.展开更多
Relationship between the hole concentration at room temperature and the Mg doping concentration in p-GaN grown by MOCVD after sufficient annealing was studied in this paper.Different annealing conditions were applied ...Relationship between the hole concentration at room temperature and the Mg doping concentration in p-GaN grown by MOCVD after sufficient annealing was studied in this paper.Different annealing conditions were applied to obtain sufficient activation for p-GaN samples with different Mg doping ranges.Hole concentration,resistivity and mobility were characterized by room-temperature Hall measurements.The Mg doping concentration and the residual impurities such as H,C,O and Si were measured by secondary ion mass spectroscopy,confirming negligible compensations by the impurities.The hole concentration,resistivity and mobility data are presented as a function of Mg concentration,and are compared with literature data.The appropriate curve relating the Mg doping concentration to the hole concentration is derived using a charge neutrality equation and the ionized-acceptor-density[N-(A)^(-)](cm^(−3))dependent ionization energy of Mg acceptor was determined asE_(A)^(Mg)=184−2.66×10^(−5)×[N_(A)^(-)]1/3 meV.展开更多
A numerical model based on measured fictive temperature distributions is explored to evaluate the residual stress fields of CO_(2)laser-annealed mitigated fused silica damage sites.The proposed model extracts the resi...A numerical model based on measured fictive temperature distributions is explored to evaluate the residual stress fields of CO_(2)laser-annealed mitigated fused silica damage sites.The proposed model extracts the residual strain from the differences in thermoelastic contraction of fused silica with different fictive temperatures from the initial frozen-in temperatures to ambient temperature.The residual stress fields of mitigated damage sites for the CO_(2)laser-annealed case are obtained by a finite element analysis of equilibrium equations and constitutive equations.The simulated results indicate that the proposed model can accurately evaluate the residual stress fields of laser-annealed mitigated damage sites with a complex thermal history.The calculated maximum hoop stress is in good agreement with the reported experimental result.The estimated optical retardance profiles from the calculated radial and hoop stress fields are consistent with the photoelastic measurements.These results provide sufficient evidence to demonstrate the suitability of the proposed model for describing the residual stresses of mitigated fused silica damage sites after CO_(2)laser annealing.展开更多
A nitrogen-polarity(N-polarity)GaN-based high electron mobility transistor(HEMT)shows great potential for high-fre-quency solid-state power amplifier applications because its two-dimensional electron gas(2DEG)density ...A nitrogen-polarity(N-polarity)GaN-based high electron mobility transistor(HEMT)shows great potential for high-fre-quency solid-state power amplifier applications because its two-dimensional electron gas(2DEG)density and mobility are mini-mally affected by device scaling.However,the Schottky barrier height(SBH)of N-polarity GaN is low.This leads to a large gate leakage in N-polarity GaN-based HEMTs.In this work,we investigate the effect of annealing on the electrical characteristics of N-polarity GaN-based Schottky barrier diodes(SBDs)with Ni/Au electrodes.Our results show that the annealing time and tem-perature have a large influence on the electrical properties of N-polarity GaN SBDs.Compared to the N-polarity SBD without annealing,the SBH and rectification ratio at±5 V of the SBD are increased from 0.51 eV and 30 to 0.77 eV and 7700,respec-tively,and the ideal factor of the SBD is decreased from 1.66 to 1.54 after an optimized annealing process.Our analysis results suggest that the improvement of the electrical properties of SBDs after annealing is mainly due to the reduction of the inter-face state density between Schottky contact metals and N-polarity GaN and the increase of barrier height for the electron emis-sion from the trap state at low reverse bias.展开更多
The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)all...The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)alloy was developed using the unique role of rare earth and Ca solute atoms.In addition,the influence of the annealing process on the grain size,second phase,texture,and mechanical properties of the warm-rolled sheet at room temperature was analyzed with the goal of developing high-plasticity mag-nesium alloy sheets and obtaining optimal thermal-mechanical treatment parameters.The results show that the annealing temperature has a significant effect on the microstructure and properties due to the low alloying content:there are small amounts of larger-sized block and long string phases along the rolling direction(RD),as well as several spherical and rodlike particle phases inside the grains.With increas-ing annealing temperature,the grain size decreases and then increases,and the morphology,number,and size of the second phase also change correspondingly.The particle phase within the grains vanishes at 450℃,and the grain size increases sharply.In the full recrystal-lization stage at 300-350℃,the optimum strength-plasticity comprehensive mechanical properties are presented,with yield strengths of 182.1 and 176.9 MPa,tensile strengths of 271.1 and 275.8 MPa in the RD and transverse direction(TD),and elongation values of 27.4%and 32.3%,respectively.Moreover,there are still some larger-sized phases in the alloy that influence its mechanical properties,which offers room for improvement.展开更多
In this study,the Mg-3Zn-0.5Zr-χNd(χ=0,0.6)alloys were subjected to final rolling treatment with large deformation of 50%.The impact of annealing temperatures on the microstructure and mechanical properties was inve...In this study,the Mg-3Zn-0.5Zr-χNd(χ=0,0.6)alloys were subjected to final rolling treatment with large deformation of 50%.The impact of annealing temperatures on the microstructure and mechanical properties was investigated.The rolled Mg-3Zn-0.5Zr-0.6Nd alloy exhibited an ultimate tensile strength of 386 MPa,a yield strength of 361 MPa,and an elongation of 7.1%.Annealing at different temperatures resulted in reduced strength and obviously increased elongation for both alloys.Optimal mechanical properties for the Mg-3Zn-0.5Zr-0.6Nd alloy were achieved after annealing at 200℃,with an ultimate tensile strength of 287 MPa,a yield strength of 235 MPa,and an elongation of 26.1%.The numerous deformed microstructures,twins,and precipitated phases in the rolled alloy could impede the deformation at room temperature and increase the work hardening rate.After annealing,a decrease in the work hardening effect and an increase in the dynamic recovery effect were obtained due to the formation of fine equiaxed grains,and the increased volume fraction of precipitated phases,which significantly improved the elongation of the alloy.Additionally,the addition of Nd element could enhance the annealing recrystallization rate,reduce the Schmid factor difference between basal and prismatic slip systems,facilitate multi-system slip initiation and improve the alloy plasticity.展开更多
In this study we are reporting annealing induced optical properties of bismuth ferrite (BiFeO3) thin films deposited on glass substrate via spin coating at 5000 rpm. The structural, optical and surface morphology of B...In this study we are reporting annealing induced optical properties of bismuth ferrite (BiFeO3) thin films deposited on glass substrate via spin coating at 5000 rpm. The structural, optical and surface morphology of BiFeO3 (BFO) thin films have been studied via X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Optical absorption (UV-Vis) and Photoluminescence (PL) spectroscopy. XRD spectra confirm annealing induced phase formation of BiFeO3 possessing a rhombohedral R3c structure. The films are dense and without cracks, although the presence of porosity in BFO/glass was observed. Moreover, optical absorption spectra indicate annealing induced effect on the energy band structure in comparison to pristine BiFeO3. It is observed that annealing effect shows an intense shift in the UV-Vis spectra as diffuse absorption together with the variation in the optical band gap. The evaluated optical band gap values are approximately equal to the bulk band gap value of BiFeO3.展开更多
Imbalanced data classification is one of the major problems in machine learning.This imbalanced dataset typically has significant differences in the number of data samples between its classes.In most cases,the perform...Imbalanced data classification is one of the major problems in machine learning.This imbalanced dataset typically has significant differences in the number of data samples between its classes.In most cases,the performance of the machine learning algorithm such as Support Vector Machine(SVM)is affected when dealing with an imbalanced dataset.The classification accuracy is mostly skewed toward the majority class and poor results are exhibited in the prediction of minority-class samples.In this paper,a hybrid approach combining data pre-processing technique andSVMalgorithm based on improved Simulated Annealing(SA)was proposed.Firstly,the data preprocessing technique which primarily aims at solving the resampling strategy of handling imbalanced datasets was proposed.In this technique,the data were first synthetically generated to equalize the number of samples between classes and followed by a reduction step to remove redundancy and duplicated data.Next is the training of a balanced dataset using SVM.Since this algorithm requires an iterative process to search for the best penalty parameter during training,an improved SA algorithm was proposed for this task.In this proposed improvement,a new acceptance criterion for the solution to be accepted in the SA algorithm was introduced to enhance the accuracy of the optimization process.Experimental works based on ten publicly available imbalanced datasets have demonstrated higher accuracy in the classification tasks using the proposed approach in comparison with the conventional implementation of SVM.Registering at an average of 89.65%of accuracy for the binary class classification has demonstrated the good performance of the proposed works.展开更多
As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of ...As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of EVs.In other words,reasonably planning the location and capacity of charging stations is important for development of the EV industry and the safe and stable operation of the power system.Considering the construction and maintenance of the charging station,the distribution network loss of the charging station,and the economic loss on the user side of the EV,this paper takes the node and capacity of charging station planning as control variables and the minimum cost of system comprehensive planning as objective function,and thus proposes a location and capacity planning model for the EV charging station.Based on the problems of low efficiency and insufficient global optimization ability of the current algorithm,the simulated annealing immune particle swarm optimization algorithm(SA-IPSO)is adopted in this paper.The simulated annealing algorithm is used in the global update of the particle swarm optimization(PSO),and the immune mechanism is introduced to participate in the iterative update of the particles,so as to improve the speed and efficiency of PSO.Voronoi diagram is used to divide service area of the charging station,and a joint solution process of Voronoi diagram and SA-IPSO is proposed.By example analysis,the results show that the optimal solution corresponding to the optimisation method proposed in this paper has a low overall cost,while the average charging waiting time is only 1.8 min and the charging pile utilisation rate is 75.5%.The simulation comparison verifies that the improved algorithm improves the operational efficiency by 18.1%and basically does not fall into local convergence.展开更多
In this work, we investigated the influence of phosphorus and magnetic anneal on the soft magnetic properties of electrodeposited FeMnP alloy films prepared by changing sodium hypophosphite concentrations. X-ray diffr...In this work, we investigated the influence of phosphorus and magnetic anneal on the soft magnetic properties of electrodeposited FeMnP alloy films prepared by changing sodium hypophosphite concentrations. X-ray diffraction radiation patterns showed an amorphous structure of electrodeposited alloy films. The saturation magnetization and coercivity value decreased from 586 emu/cc to 346 emu/cc, and 52 Oe to 18 Oe, with the P content increased, respectively. The absorption resonance peak became broad as the P content increased, and the natural resonance frequency decreased from 1.8 GHz to 0.6 GHz, with the P content increasing. Magnetic annealing of samples reduced the magnetic damping, and natural resonance frequency increased by about 1.8 GHz and 3.5 GHz for the sample with lower and higher P content. The film structure with lower P content changed at 300˚C, while the structure remains unchanged for the films with higher P content. Thus, the crystallization temperature could depend on the P content in the film. FeMnP alloy films could be used in high-frequency devices.展开更多
Thermal oxidation and hydrogen annealing were applied on a 100μm thick Al-doped p-type 4H-Si C epitaxial wafer to modulate the minority carrier lifetime,which was investigated by microwave photoconductive decay(μ-PC...Thermal oxidation and hydrogen annealing were applied on a 100μm thick Al-doped p-type 4H-Si C epitaxial wafer to modulate the minority carrier lifetime,which was investigated by microwave photoconductive decay(μ-PCD).The minority carrier lifetime decreased after each thermal oxidation.On the contrary,with the hydrogen annealing time increasing to3 hours,the minority carrier lifetime increased from 1.1μs(as-grown)to 3.14μs and then saturated after the annealing time reached 4 hours.The increase of surface roughness from 0.236 nm to 0.316 nm may also be one of the reasons for limiting the further improvement of the minority carrier lifetimes.Moreover,the whole wafer mappings of minority carrier lifetimes before and after hydrogen annealing were measured and discussed.The average minority carrier lifetime was up to 1.94μs and non-uniformity of carrier lifetime reached 38%after 4-hour hydrogen annealing.The increasing minority carrier lifetimes could be attributed to the double mechanisms of excess carbon atoms diffusion caused by selective etching of Si atoms and passivation of deep-level defects by hydrogen atoms.展开更多
Cascade refrigeration system(CRS)can meet a wider range of refrigeration temperature requirements and is more energy efficient than single-refrigerant refrigeration system,making it more widely used in low-temperature...Cascade refrigeration system(CRS)can meet a wider range of refrigeration temperature requirements and is more energy efficient than single-refrigerant refrigeration system,making it more widely used in low-temperature industry processes.The synthesis of a CRS with simultaneous consideration of heat integration between refrigerant and process streams is challenging but promising for significant cost saving and reduction of carbon emission.This study presented a stochastic optimization method for the synthesis of CRS.An MINLP model was formulated based on the superstructure developed for the CRS,and an optimization framework was proposed,where simulated annealing algorithm was used to evolve the numbers of pressure/temperature levels for all sub-refrigeration systems,and particle swarm optimization algorithm was employed to optimize the continuous variables.The effectiveness of the proposed methodology was verified by a case study of CRS optimization in an ethylene plant with 21.89%the total annual cost saving.展开更多
Due to improper acquisition settings and other noise artifacts,the image degraded to yield poor mean preservation in brightness.The simplest way to improve the preservation is the implementation of histogram equalizat...Due to improper acquisition settings and other noise artifacts,the image degraded to yield poor mean preservation in brightness.The simplest way to improve the preservation is the implementation of histogram equalization.Because of over-enhancement,it failed to preserve the mean brightness and produce the poor quality of the image.This paper proposes a multi-scale decomposi-tion for brightness preservation using gamma correction.After transformation to hue,saturation and intensity(HSI)channel,the 2D-discrete wavelet transform decomposed the intensity component into low and high-pass coefficients.At the next phase,gamma correction is used by auto-tuning the scale value.The scale is the modified constant value used in the logarithmic function.Further,the scale value is optimized to obtain better visual quality in the image.The optimized value is the weighted distribution of standard deviation-mean of low pass coefficients.Finally,the experimental result is estimated in terms of quality assessment measures used as absolute mean brightness error,the measure of information detail,signal to noise ratio and patch-based contrast quality in the image.By comparison,the proposed method proved to be suitably remarkable in retaining the mean brightness and better visual quality of the image.展开更多
Any nonlinear behavior of the system is analyzed by a useful way of Total Harmonic Distortion(THD)technique.Reduced THD achieves lower peak current,higher efficiency and longer equipment life span.Simulated annealing(S...Any nonlinear behavior of the system is analyzed by a useful way of Total Harmonic Distortion(THD)technique.Reduced THD achieves lower peak current,higher efficiency and longer equipment life span.Simulated annealing(SA)is applied due to the effectiveness of locating solutions that are close to ideal and to challenge large-scale combinatorial optimization for Permanent Magnet Synchronous Machine(PMSM).The parameters of direct torque controllers(DTC)for the drive are automatically adjusted by the optimization algorithm.Advantages of the PI-Fuzzy-SA algorithm are retained when used together.It also improves the rate of system convergence.Speed response improvement and har-monic reduction is achieved with SA-based DTC for PMSM.This mechanism is known to be faster than other algorithms.Also,it is observed that as compared to other algorithms,the projected algorithm yields a reduced total harmonic distor-tion.As a result of the employment of Space Vector Modulation(SVM)techni-que,the system is resistant to changes in motor specifications and load torque.Through MATLAB&Simulink simulation,the experiment is done and the per-formance is calculated for the controller.展开更多
Plasma cladding was used to prepare a CoCrFeMnNi high-entropy alloy(HEA)coating under different conditions.The process parameters were optimized using an orthogonal experiment design based on surface morphology qualit...Plasma cladding was used to prepare a CoCrFeMnNi high-entropy alloy(HEA)coating under different conditions.The process parameters were optimized using an orthogonal experiment design based on surface morphology quality characteristics,dilution rate,and hardness.The optimal process parameters were determined through range and variance analysis to be a cladding current of 70 A,a cladding speed of 7 cm·min^(-1),and a powder gas flow rate of 8 L·s^(-1).During the optimized experiments,both the cladded and annealed CoCrFeMnNi HEA coatings exhibit some pores,micro-voids,and a small amount of aggregation.However,the aggregation in the annealed coating is more dispersed than that in the cladded coating.The cladded CoCrFeMnNi HEA coating consists of simple FCC phases,while a new Cr-rich phase precipitates from the FCC matrix after annealing the coating at a temperature range of 550°C-950°C.After annealing at 850°C,the proportion of the FCC phase decreases compared to the cladded coating,and the number of large-angle grain boundaries is significantly reduced.However,the proportion of grains with sizes below 50μm increases from 61.7%to 74.3%.The micro-hardness and wear resistance of the cladded coating initially increases but then decreases with an increase in annealing temperature,indicating that appropriate annealing can significantly improve the mechanical properties of the CoCrFeMnNi HEA coatings by plasma cladding.The micro-hardness of the CoCrFeMnNi HEA coatings after annealing at 650°C increases to 274.82 HV_(0.2),while the friction coefficient decreases to below 0.595.展开更多
Improved radio-frequency(RF)power performance of InAlN/GaN high electron mobility transistor(HEMT)is achieved by optimizing the rapid thermal annealing(RTA)process for high-performance low-voltage terminal application...Improved radio-frequency(RF)power performance of InAlN/GaN high electron mobility transistor(HEMT)is achieved by optimizing the rapid thermal annealing(RTA)process for high-performance low-voltage terminal applications.By optimizing the RTA temperature and time,the optimal annealing condition is found to enable low parasitic resistance and thus a high-performance device.Besides,compared with the non-optimized RTA HEMT,the optimized one demonstrates smoother ohmic metal surface morphology and better heterojunction quality including the less degraded heterojunction sheet resistance and clearer heterojunction interfaces as well as negligible material out-diffusion from the barrier to the channel and buffer.Benefiting from the lowered parasitic resistance,improved maximum output current density of 2279 mA·mm^(-1)and higher peak extrinsic transconductance of 526 mS·mm^(-1)are obtained for the optimized RTA HEMT.In addition,due to the superior heterojunction quality,the optimized HEMT shows reduced off-state leakage current of 7×10^(-3)mA·mm^(-1)and suppressed current collapse of only 4%,compared with those of 1×10^(-1)mA·mm^(-1)and 15%for the non-optimized one.At 8 GHz and V_(DS)of 6 V,a significantly improved power-added efficiency of 62%and output power density of 0.71 W·mm^(-1)are achieved for the optimized HEMT,as the result of the improvement in output current,knee voltage,off-state leakage current,and current collapse,which reveals the tremendous advantage of the optimized RTA HEMT in high-performance low-voltage terminal applications.展开更多
At 2 a.m.on March 29,2023(Beijing Time),the Institute of High Energy Physics(IHEP)of the Chinese Academy of Sciences(CAS),together with some 40 research institutions worldwide,released their latest discoveries on the ...At 2 a.m.on March 29,2023(Beijing Time),the Institute of High Energy Physics(IHEP)of the Chinese Academy of Sciences(CAS),together with some 40 research institutions worldwide,released their latest discoveries on the brightest Gamma-Ray Burst(dubbed as GRB 221009A)ever detected by humanity.With the unique observations made by two Chinese space telescopes,namely Insight-HXMT and GECAM-C,scientists were able to accurately measure how bright and how much energy was released by this burst,which is the key to understanding this historical event.展开更多
基金This work was financially supported by the National Science and Technology Major Project of China(No.J2019-VI-0006-0120)the National Key R&D Program of China(No.2021YFB3700402)the National Natural Science Foundation of China(Nos.52074092 and 52274330).
文摘We discussed the decrease in residual stress,precipitation evolution,and mechanical properties of GH4151 alloy in different annealing temperatures,which were studied by the scanning electron microscope(SEM),high-resolution transmission electron microscopy(HRTEM),and electron backscatter diffraction(EBSD).The findings reveal that annealing processing has a significant impact on diminishing residual stresses.As the annealing temperature rose from 950 to 1150℃,the majority of the residual stresses were relieved from 60.1 MPa down to 10.9 MPa.Moreover,the stress relaxation mechanism transitioned from being mainly controlled by dislocation slip to a combination of dislocation slip and grain boundary migration.Meanwhile,the annealing treatment promotes the decomposition of the Laves,accompanied by the precipitation ofμ-(Mo_(6)Co_(7))starting at 950℃ and reaching a maximum value at 1050℃.The tensile strength and plasticity of the annealing alloy at 1150℃ reached the maximum(1394 MPa,56.1%)which was 131%,200%fold than those of the as-cast alloy(1060 MPa,26.6%),but the oxidation process in the alloy was accelerated at 1150℃.The enhancement in durability and flexibility is primarily due to the dissolution of the brittle phase,along with the shape and dispersal of theγ′phase.
基金the financial support from the High-Tech Industry Technology Innovation Leading Plan of Hunan Province,China(2020GK2032)the Innovation Driven Program of Central South University(CSU)(2019CX006)the Research Fund of the Key Laboratory of High Performance Complex Manufacturing at CSU。
文摘Ultra fine-grained pure metals and their alloys have high strength and low ductility.In this study,cryorolling under different strains followed by low-temperature short-time annealing was used to fabricate pure nickel sheets combining high strength with good ductility.The results show that,for different cryorolling strains,the uniform elongation was greatly increased without sacrificing the strength after annealing.A yield strength of 607 MPa and a uniform elongation of 11.7%were obtained after annealing at a small cryorolling strain(ε=0.22),while annealing at a large cryorolling strain(ε=1.6)resulted in a yield strength of 990 MPa and a uniform elongation of 6.4%.X-ray diffraction(XRD),transmission electron microscopy(TEM),scanning electron microscopy(SEM),and electron backscattered diffraction(EBSD)were used to characterize the microstructure of the specimens and showed that the high strength could be attributed to strain hardening during cryorolling,with an additional contribution from grain refinement and the formation of dislocation walls.The high ductility could be attributed to annealing twins and micro-shear bands during stretching,which improved the strain hardening capacity.The results show that the synergistic effect of strength and ductility can be regulated through low-temperature short-time annealing with different cryorolling strains,which provides a new reference for the design of future thermo-mechanical processes.
文摘The effects of the gravitational redshift of gravitons upon spiral galaxy rotation energy are compared to the standard mass to light analyses in obtaining rotation curves. The derivation of the total baryonic matter compares well with the standard theory and the rotation velocity is matched to a high precision. The stellar mass distributions obtained from the fit with graviton energy loss are used to derive the surface brightness magnitudes for the galaxies, which agree well with the observed measurements. In a new field of investigation, the graviton theory is applied to the observations of gravitational lenses. The results of these applications of the theory suggest that it can augment the standard methods and may eliminate the need for dark matter.
基金supported by the National Natural Science Foundation of China(62150710548,61834008,U21A20493)the National Key Research and Development Program of China(2022YFB2802801)+2 种基金the Key Research and Development Program of Jiangsu Province(BE2021008-1)the Suzhou Key Laboratory of New-type Laser Display Technology(SZS2022007)the Natural Science Foundation of Jiangsu Province(BK20232042).
文摘Relationship between the hole concentration at room temperature and the Mg doping concentration in p-GaN grown by MOCVD after sufficient annealing was studied in this paper.Different annealing conditions were applied to obtain sufficient activation for p-GaN samples with different Mg doping ranges.Hole concentration,resistivity and mobility were characterized by room-temperature Hall measurements.The Mg doping concentration and the residual impurities such as H,C,O and Si were measured by secondary ion mass spectroscopy,confirming negligible compensations by the impurities.The hole concentration,resistivity and mobility data are presented as a function of Mg concentration,and are compared with literature data.The appropriate curve relating the Mg doping concentration to the hole concentration is derived using a charge neutrality equation and the ionized-acceptor-density[N-(A)^(-)](cm^(−3))dependent ionization energy of Mg acceptor was determined asE_(A)^(Mg)=184−2.66×10^(−5)×[N_(A)^(-)]1/3 meV.
基金Project supported by the National Natural Science Foundation of China(Grant No.62275235).
文摘A numerical model based on measured fictive temperature distributions is explored to evaluate the residual stress fields of CO_(2)laser-annealed mitigated fused silica damage sites.The proposed model extracts the residual strain from the differences in thermoelastic contraction of fused silica with different fictive temperatures from the initial frozen-in temperatures to ambient temperature.The residual stress fields of mitigated damage sites for the CO_(2)laser-annealed case are obtained by a finite element analysis of equilibrium equations and constitutive equations.The simulated results indicate that the proposed model can accurately evaluate the residual stress fields of laser-annealed mitigated damage sites with a complex thermal history.The calculated maximum hoop stress is in good agreement with the reported experimental result.The estimated optical retardance profiles from the calculated radial and hoop stress fields are consistent with the photoelastic measurements.These results provide sufficient evidence to demonstrate the suitability of the proposed model for describing the residual stresses of mitigated fused silica damage sites after CO_(2)laser annealing.
基金This work was supported by the National Key R&D Program of China(Nos.2022YFB3605205,2021YFB3601000,and 2021YFB3601002)the National Natural Science Foundation of China(Nos.U22A20134,62074069,62104078,and 62104079)the Science and Technology Developing Project of Jilin Province(Nos.20220201065GX,20230101053JC,and 20220101119JC).
文摘A nitrogen-polarity(N-polarity)GaN-based high electron mobility transistor(HEMT)shows great potential for high-fre-quency solid-state power amplifier applications because its two-dimensional electron gas(2DEG)density and mobility are mini-mally affected by device scaling.However,the Schottky barrier height(SBH)of N-polarity GaN is low.This leads to a large gate leakage in N-polarity GaN-based HEMTs.In this work,we investigate the effect of annealing on the electrical characteristics of N-polarity GaN-based Schottky barrier diodes(SBDs)with Ni/Au electrodes.Our results show that the annealing time and tem-perature have a large influence on the electrical properties of N-polarity GaN SBDs.Compared to the N-polarity SBD without annealing,the SBH and rectification ratio at±5 V of the SBD are increased from 0.51 eV and 30 to 0.77 eV and 7700,respec-tively,and the ideal factor of the SBD is decreased from 1.66 to 1.54 after an optimized annealing process.Our analysis results suggest that the improvement of the electrical properties of SBDs after annealing is mainly due to the reduction of the inter-face state density between Schottky contact metals and N-polarity GaN and the increase of barrier height for the electron emis-sion from the trap state at low reverse bias.
基金supported by the National Natural Science Foundation of China(Nos.52271107 and 52205392)the Natural Science Foundation of Shandong Province(No.ZR2021ME241)the Bintech-IMR R&D Program(No.GYY-JSBU-2022-012).
文摘The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)alloy was developed using the unique role of rare earth and Ca solute atoms.In addition,the influence of the annealing process on the grain size,second phase,texture,and mechanical properties of the warm-rolled sheet at room temperature was analyzed with the goal of developing high-plasticity mag-nesium alloy sheets and obtaining optimal thermal-mechanical treatment parameters.The results show that the annealing temperature has a significant effect on the microstructure and properties due to the low alloying content:there are small amounts of larger-sized block and long string phases along the rolling direction(RD),as well as several spherical and rodlike particle phases inside the grains.With increas-ing annealing temperature,the grain size decreases and then increases,and the morphology,number,and size of the second phase also change correspondingly.The particle phase within the grains vanishes at 450℃,and the grain size increases sharply.In the full recrystal-lization stage at 300-350℃,the optimum strength-plasticity comprehensive mechanical properties are presented,with yield strengths of 182.1 and 176.9 MPa,tensile strengths of 271.1 and 275.8 MPa in the RD and transverse direction(TD),and elongation values of 27.4%and 32.3%,respectively.Moreover,there are still some larger-sized phases in the alloy that influence its mechanical properties,which offers room for improvement.
基金Project(202203021221088)supported by the Fundamental Research Program of Shanxi Province,ChinaProject(20230010)supported by the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province,China+5 种基金Project(202201050201012)supported by the Shanxi Provincial Science and Technology Major Special Project Plan of Taking the Lead in Unveiling the List,ChinaProject(2023-063)supported by the Research Project Supported by Shanxi Scholarship Council of ChinaProjects(51771129,52271109)supported by the National Natural Science Foundation of ChinaProject(2021YFB3703300)supported by the National Key Research and Development Program for Young Scientists,ChinaProject(YDZJSX2021B019)supported by the Special Fund Project for Guiding Local Science and Technology Development by the Central Government,ChinaProject(SKL-YSJ202103)supported by the Open Foundation of State Key Laboratory of High-end Compressor and System Technology,China。
文摘In this study,the Mg-3Zn-0.5Zr-χNd(χ=0,0.6)alloys were subjected to final rolling treatment with large deformation of 50%.The impact of annealing temperatures on the microstructure and mechanical properties was investigated.The rolled Mg-3Zn-0.5Zr-0.6Nd alloy exhibited an ultimate tensile strength of 386 MPa,a yield strength of 361 MPa,and an elongation of 7.1%.Annealing at different temperatures resulted in reduced strength and obviously increased elongation for both alloys.Optimal mechanical properties for the Mg-3Zn-0.5Zr-0.6Nd alloy were achieved after annealing at 200℃,with an ultimate tensile strength of 287 MPa,a yield strength of 235 MPa,and an elongation of 26.1%.The numerous deformed microstructures,twins,and precipitated phases in the rolled alloy could impede the deformation at room temperature and increase the work hardening rate.After annealing,a decrease in the work hardening effect and an increase in the dynamic recovery effect were obtained due to the formation of fine equiaxed grains,and the increased volume fraction of precipitated phases,which significantly improved the elongation of the alloy.Additionally,the addition of Nd element could enhance the annealing recrystallization rate,reduce the Schmid factor difference between basal and prismatic slip systems,facilitate multi-system slip initiation and improve the alloy plasticity.
文摘In this study we are reporting annealing induced optical properties of bismuth ferrite (BiFeO3) thin films deposited on glass substrate via spin coating at 5000 rpm. The structural, optical and surface morphology of BiFeO3 (BFO) thin films have been studied via X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Optical absorption (UV-Vis) and Photoluminescence (PL) spectroscopy. XRD spectra confirm annealing induced phase formation of BiFeO3 possessing a rhombohedral R3c structure. The films are dense and without cracks, although the presence of porosity in BFO/glass was observed. Moreover, optical absorption spectra indicate annealing induced effect on the energy band structure in comparison to pristine BiFeO3. It is observed that annealing effect shows an intense shift in the UV-Vis spectra as diffuse absorption together with the variation in the optical band gap. The evaluated optical band gap values are approximately equal to the bulk band gap value of BiFeO3.
基金supported by the National Key R&D Program of China[grant number 2022YFF0801301]the National Natural Science Foundation of China[grant number 41575033]+1 种基金the Fengyun Satellite Application Pioneer Project[grant number FY-APP-2022.0111]the Natural Science Foundation of Jiangsu Province[grant number BK20231148]。
文摘Imbalanced data classification is one of the major problems in machine learning.This imbalanced dataset typically has significant differences in the number of data samples between its classes.In most cases,the performance of the machine learning algorithm such as Support Vector Machine(SVM)is affected when dealing with an imbalanced dataset.The classification accuracy is mostly skewed toward the majority class and poor results are exhibited in the prediction of minority-class samples.In this paper,a hybrid approach combining data pre-processing technique andSVMalgorithm based on improved Simulated Annealing(SA)was proposed.Firstly,the data preprocessing technique which primarily aims at solving the resampling strategy of handling imbalanced datasets was proposed.In this technique,the data were first synthetically generated to equalize the number of samples between classes and followed by a reduction step to remove redundancy and duplicated data.Next is the training of a balanced dataset using SVM.Since this algorithm requires an iterative process to search for the best penalty parameter during training,an improved SA algorithm was proposed for this task.In this proposed improvement,a new acceptance criterion for the solution to be accepted in the SA algorithm was introduced to enhance the accuracy of the optimization process.Experimental works based on ten publicly available imbalanced datasets have demonstrated higher accuracy in the classification tasks using the proposed approach in comparison with the conventional implementation of SVM.Registering at an average of 89.65%of accuracy for the binary class classification has demonstrated the good performance of the proposed works.
基金Key R&D Program of Tianjin,China(No.20YFYSGX00060).
文摘As the number of electric vehicles(EVs)continues to grow and the demand for charging infrastructure is also increasing,how to improve the charging infrastructure has become a bottleneck restricting the development of EVs.In other words,reasonably planning the location and capacity of charging stations is important for development of the EV industry and the safe and stable operation of the power system.Considering the construction and maintenance of the charging station,the distribution network loss of the charging station,and the economic loss on the user side of the EV,this paper takes the node and capacity of charging station planning as control variables and the minimum cost of system comprehensive planning as objective function,and thus proposes a location and capacity planning model for the EV charging station.Based on the problems of low efficiency and insufficient global optimization ability of the current algorithm,the simulated annealing immune particle swarm optimization algorithm(SA-IPSO)is adopted in this paper.The simulated annealing algorithm is used in the global update of the particle swarm optimization(PSO),and the immune mechanism is introduced to participate in the iterative update of the particles,so as to improve the speed and efficiency of PSO.Voronoi diagram is used to divide service area of the charging station,and a joint solution process of Voronoi diagram and SA-IPSO is proposed.By example analysis,the results show that the optimal solution corresponding to the optimisation method proposed in this paper has a low overall cost,while the average charging waiting time is only 1.8 min and the charging pile utilisation rate is 75.5%.The simulation comparison verifies that the improved algorithm improves the operational efficiency by 18.1%and basically does not fall into local convergence.
文摘In this work, we investigated the influence of phosphorus and magnetic anneal on the soft magnetic properties of electrodeposited FeMnP alloy films prepared by changing sodium hypophosphite concentrations. X-ray diffraction radiation patterns showed an amorphous structure of electrodeposited alloy films. The saturation magnetization and coercivity value decreased from 586 emu/cc to 346 emu/cc, and 52 Oe to 18 Oe, with the P content increased, respectively. The absorption resonance peak became broad as the P content increased, and the natural resonance frequency decreased from 1.8 GHz to 0.6 GHz, with the P content increasing. Magnetic annealing of samples reduced the magnetic damping, and natural resonance frequency increased by about 1.8 GHz and 3.5 GHz for the sample with lower and higher P content. The film structure with lower P content changed at 300˚C, while the structure remains unchanged for the films with higher P content. Thus, the crystallization temperature could depend on the P content in the film. FeMnP alloy films could be used in high-frequency devices.
基金Project supported by Key Area Research and Development Project of Guangdong Province,China(Grant No.2020B010170002)the Science Challenge Project(Grant No.TZ2018003-1-101)+4 种基金the Natural Science Foundation of Fujian Province of China for Distinguished Young Scholars(Grant No.2020J06002)the Science and Technology Project of Fujian Province of China(Grant No.2020I0001)the Fundamental Research Funds for the Central Universities(Grant Nos.20720190049 and 20720190053)the Science and Technology Key Projects of Xiamen(Grant No.3502ZCQ20191001)the National Natural Science Foundation of China(Grant No.51871189)。
文摘Thermal oxidation and hydrogen annealing were applied on a 100μm thick Al-doped p-type 4H-Si C epitaxial wafer to modulate the minority carrier lifetime,which was investigated by microwave photoconductive decay(μ-PCD).The minority carrier lifetime decreased after each thermal oxidation.On the contrary,with the hydrogen annealing time increasing to3 hours,the minority carrier lifetime increased from 1.1μs(as-grown)to 3.14μs and then saturated after the annealing time reached 4 hours.The increase of surface roughness from 0.236 nm to 0.316 nm may also be one of the reasons for limiting the further improvement of the minority carrier lifetimes.Moreover,the whole wafer mappings of minority carrier lifetimes before and after hydrogen annealing were measured and discussed.The average minority carrier lifetime was up to 1.94μs and non-uniformity of carrier lifetime reached 38%after 4-hour hydrogen annealing.The increasing minority carrier lifetimes could be attributed to the double mechanisms of excess carbon atoms diffusion caused by selective etching of Si atoms and passivation of deep-level defects by hydrogen atoms.
基金supported by the National Natural Science Foundation of China(21978203)the Natural Science Foundation of Tianjin City(19JCYBJC20300)。
文摘Cascade refrigeration system(CRS)can meet a wider range of refrigeration temperature requirements and is more energy efficient than single-refrigerant refrigeration system,making it more widely used in low-temperature industry processes.The synthesis of a CRS with simultaneous consideration of heat integration between refrigerant and process streams is challenging but promising for significant cost saving and reduction of carbon emission.This study presented a stochastic optimization method for the synthesis of CRS.An MINLP model was formulated based on the superstructure developed for the CRS,and an optimization framework was proposed,where simulated annealing algorithm was used to evolve the numbers of pressure/temperature levels for all sub-refrigeration systems,and particle swarm optimization algorithm was employed to optimize the continuous variables.The effectiveness of the proposed methodology was verified by a case study of CRS optimization in an ethylene plant with 21.89%the total annual cost saving.
文摘Due to improper acquisition settings and other noise artifacts,the image degraded to yield poor mean preservation in brightness.The simplest way to improve the preservation is the implementation of histogram equalization.Because of over-enhancement,it failed to preserve the mean brightness and produce the poor quality of the image.This paper proposes a multi-scale decomposi-tion for brightness preservation using gamma correction.After transformation to hue,saturation and intensity(HSI)channel,the 2D-discrete wavelet transform decomposed the intensity component into low and high-pass coefficients.At the next phase,gamma correction is used by auto-tuning the scale value.The scale is the modified constant value used in the logarithmic function.Further,the scale value is optimized to obtain better visual quality in the image.The optimized value is the weighted distribution of standard deviation-mean of low pass coefficients.Finally,the experimental result is estimated in terms of quality assessment measures used as absolute mean brightness error,the measure of information detail,signal to noise ratio and patch-based contrast quality in the image.By comparison,the proposed method proved to be suitably remarkable in retaining the mean brightness and better visual quality of the image.
文摘Any nonlinear behavior of the system is analyzed by a useful way of Total Harmonic Distortion(THD)technique.Reduced THD achieves lower peak current,higher efficiency and longer equipment life span.Simulated annealing(SA)is applied due to the effectiveness of locating solutions that are close to ideal and to challenge large-scale combinatorial optimization for Permanent Magnet Synchronous Machine(PMSM).The parameters of direct torque controllers(DTC)for the drive are automatically adjusted by the optimization algorithm.Advantages of the PI-Fuzzy-SA algorithm are retained when used together.It also improves the rate of system convergence.Speed response improvement and har-monic reduction is achieved with SA-based DTC for PMSM.This mechanism is known to be faster than other algorithms.Also,it is observed that as compared to other algorithms,the projected algorithm yields a reduced total harmonic distor-tion.As a result of the employment of Space Vector Modulation(SVM)techni-que,the system is resistant to changes in motor specifications and load torque.Through MATLAB&Simulink simulation,the experiment is done and the per-formance is calculated for the controller.
基金This work was financially supported by the National Natural Science Foundation of China(No.51861025)the Jiangxi Provincial Department of Science and Technology(No.20203BDH80W008).
文摘Plasma cladding was used to prepare a CoCrFeMnNi high-entropy alloy(HEA)coating under different conditions.The process parameters were optimized using an orthogonal experiment design based on surface morphology quality characteristics,dilution rate,and hardness.The optimal process parameters were determined through range and variance analysis to be a cladding current of 70 A,a cladding speed of 7 cm·min^(-1),and a powder gas flow rate of 8 L·s^(-1).During the optimized experiments,both the cladded and annealed CoCrFeMnNi HEA coatings exhibit some pores,micro-voids,and a small amount of aggregation.However,the aggregation in the annealed coating is more dispersed than that in the cladded coating.The cladded CoCrFeMnNi HEA coating consists of simple FCC phases,while a new Cr-rich phase precipitates from the FCC matrix after annealing the coating at a temperature range of 550°C-950°C.After annealing at 850°C,the proportion of the FCC phase decreases compared to the cladded coating,and the number of large-angle grain boundaries is significantly reduced.However,the proportion of grains with sizes below 50μm increases from 61.7%to 74.3%.The micro-hardness and wear resistance of the cladded coating initially increases but then decreases with an increase in annealing temperature,indicating that appropriate annealing can significantly improve the mechanical properties of the CoCrFeMnNi HEA coatings by plasma cladding.The micro-hardness of the CoCrFeMnNi HEA coatings after annealing at 650°C increases to 274.82 HV_(0.2),while the friction coefficient decreases to below 0.595.
基金Project supported by the National Key Research and Development Project of China (Grant No.2021YFB3602404)part by the National Natural Science Foundation of China (Grant Nos.61904135 and 62234009)+4 种基金the Key R&D Program of Guangzhou (Grant No.202103020002)Wuhu and Xidian University special fund for industry-university-research cooperation (Grant No.XWYCXY-012021014-HT)the Fundamental Research Funds for the Central Universities (Grant No.XJS221110)the Natural Science Foundation of Shaanxi,China (Grant No.2022JM-377)the Innovation Fund of Xidian University (Grant No.YJSJ23019)。
文摘Improved radio-frequency(RF)power performance of InAlN/GaN high electron mobility transistor(HEMT)is achieved by optimizing the rapid thermal annealing(RTA)process for high-performance low-voltage terminal applications.By optimizing the RTA temperature and time,the optimal annealing condition is found to enable low parasitic resistance and thus a high-performance device.Besides,compared with the non-optimized RTA HEMT,the optimized one demonstrates smoother ohmic metal surface morphology and better heterojunction quality including the less degraded heterojunction sheet resistance and clearer heterojunction interfaces as well as negligible material out-diffusion from the barrier to the channel and buffer.Benefiting from the lowered parasitic resistance,improved maximum output current density of 2279 mA·mm^(-1)and higher peak extrinsic transconductance of 526 mS·mm^(-1)are obtained for the optimized RTA HEMT.In addition,due to the superior heterojunction quality,the optimized HEMT shows reduced off-state leakage current of 7×10^(-3)mA·mm^(-1)and suppressed current collapse of only 4%,compared with those of 1×10^(-1)mA·mm^(-1)and 15%for the non-optimized one.At 8 GHz and V_(DS)of 6 V,a significantly improved power-added efficiency of 62%and output power density of 0.71 W·mm^(-1)are achieved for the optimized HEMT,as the result of the improvement in output current,knee voltage,off-state leakage current,and current collapse,which reveals the tremendous advantage of the optimized RTA HEMT in high-performance low-voltage terminal applications.
文摘At 2 a.m.on March 29,2023(Beijing Time),the Institute of High Energy Physics(IHEP)of the Chinese Academy of Sciences(CAS),together with some 40 research institutions worldwide,released their latest discoveries on the brightest Gamma-Ray Burst(dubbed as GRB 221009A)ever detected by humanity.With the unique observations made by two Chinese space telescopes,namely Insight-HXMT and GECAM-C,scientists were able to accurately measure how bright and how much energy was released by this burst,which is the key to understanding this historical event.