Since the early 2000s, many satellite passive microwave brightness temperature (BT) archives, such as the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) BTs, have become the useful ...Since the early 2000s, many satellite passive microwave brightness temperature (BT) archives, such as the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) BTs, have become the useful resources for assessing the changes in the surface and deep soil moistures over both arid and semi-arid regions. In this study, we used a new soil effective temperature (T scheme and the archived AMSR-E BTs to estimate surface soil moisture (SM) over the Nagqu region in the central Tibetan Plateau, China. The surface and deep soil temperatures required for the calculation of regional-scale T were obtained from outputs of the Community Land Model version 4.5 (CLM4.5). In situ SM measurements at the CEOP-CAMP/Tibet (Coordinated Enhanced Observing Period Asia-Australia Monsoon Project on the Tibetan Plateau) experimental sites were used to validate the AMSR-E-based SM estimations at regional and single-site scales. Furthermore, the spatial distribution of monthly mean surface SM over the Nagqu region was obtained from 16 daytime AMSR-E BT observations in July 2004 over the Nagqu region. Results revealed that the AMSR-E-based surface SM estimations agreed well with the in situ-based surface SM measurements, with the root mean square error (RMSE) ranging from 0.042 to 0.066 m3/m3 and the coefficient of determination (R2) ranging from 0.71 to 0.92 during the nighttime and daytime. The regional surface soil water state map showed a clear spatial pattern related to the terrain. It indicated that the lower surface SM values occurred in the mountainous areas of the northern, mid-western and southeastern parts of Nagqu region, while the higher surface SM values appeared in the low elevation areas such as the Tongtian River Basin, Namco Lake and bog meadows in the central part of Nagqu region. Our analysis also showed that the new T^scheme does not require special fitting parameters or additional assumptions, which simplifies the data requirements for regional-scale applications. This scheme combined with the archived satellite passive microwave BT observations can be used to estimate the historical surface SM for hydrological process studies over the Tibetan Plateau regions.展开更多
针对台风业务应用中发现FY-2D和FY-2E双星观测存在亮温差过大的问题,本文以2010年台风鲇鱼(Megi)为例,利用2010年10月17日1030—1230 UTC的FY-2D/E红外1通道数据,提出了双星亮温归一化的解决方法,结果如下:(1)采用CDF(Cumulative Distri...针对台风业务应用中发现FY-2D和FY-2E双星观测存在亮温差过大的问题,本文以2010年台风鲇鱼(Megi)为例,利用2010年10月17日1030—1230 UTC的FY-2D/E红外1通道数据,提出了双星亮温归一化的解决方法,结果如下:(1)采用CDF(Cumulative Distribution Function)匹配法对双星亮温进行归一化处理,可有效利用FY-2D和FY-2E双星观测结果。个例分析表明,经归一化处理以后,双星的PDF(Probability Distribution Function)分布更趋一致,甚至在很多地方出现重合,归一化效果良好。在台风定强分析,如ADT(Advanced Dvorak Technique)算法中,归一化处理可作为数据预处理的一部分内容,不影响后面的算法和流程。(2)以MTSAT为基准,经CDF匹配法对FY-2D和2E的TBB分别进行归一化处理,将使得FY-2的亮温与MTSAT具有可比性,便于比较国内外的台风定强分析结果和算法差异。展开更多
基金supported by the National Natural Science Foundation of China (41575013)the National Supercomputer Center in Guangzhou, China
文摘Since the early 2000s, many satellite passive microwave brightness temperature (BT) archives, such as the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) BTs, have become the useful resources for assessing the changes in the surface and deep soil moistures over both arid and semi-arid regions. In this study, we used a new soil effective temperature (T scheme and the archived AMSR-E BTs to estimate surface soil moisture (SM) over the Nagqu region in the central Tibetan Plateau, China. The surface and deep soil temperatures required for the calculation of regional-scale T were obtained from outputs of the Community Land Model version 4.5 (CLM4.5). In situ SM measurements at the CEOP-CAMP/Tibet (Coordinated Enhanced Observing Period Asia-Australia Monsoon Project on the Tibetan Plateau) experimental sites were used to validate the AMSR-E-based SM estimations at regional and single-site scales. Furthermore, the spatial distribution of monthly mean surface SM over the Nagqu region was obtained from 16 daytime AMSR-E BT observations in July 2004 over the Nagqu region. Results revealed that the AMSR-E-based surface SM estimations agreed well with the in situ-based surface SM measurements, with the root mean square error (RMSE) ranging from 0.042 to 0.066 m3/m3 and the coefficient of determination (R2) ranging from 0.71 to 0.92 during the nighttime and daytime. The regional surface soil water state map showed a clear spatial pattern related to the terrain. It indicated that the lower surface SM values occurred in the mountainous areas of the northern, mid-western and southeastern parts of Nagqu region, while the higher surface SM values appeared in the low elevation areas such as the Tongtian River Basin, Namco Lake and bog meadows in the central part of Nagqu region. Our analysis also showed that the new T^scheme does not require special fitting parameters or additional assumptions, which simplifies the data requirements for regional-scale applications. This scheme combined with the archived satellite passive microwave BT observations can be used to estimate the historical surface SM for hydrological process studies over the Tibetan Plateau regions.
文摘针对台风业务应用中发现FY-2D和FY-2E双星观测存在亮温差过大的问题,本文以2010年台风鲇鱼(Megi)为例,利用2010年10月17日1030—1230 UTC的FY-2D/E红外1通道数据,提出了双星亮温归一化的解决方法,结果如下:(1)采用CDF(Cumulative Distribution Function)匹配法对双星亮温进行归一化处理,可有效利用FY-2D和FY-2E双星观测结果。个例分析表明,经归一化处理以后,双星的PDF(Probability Distribution Function)分布更趋一致,甚至在很多地方出现重合,归一化效果良好。在台风定强分析,如ADT(Advanced Dvorak Technique)算法中,归一化处理可作为数据预处理的一部分内容,不影响后面的算法和流程。(2)以MTSAT为基准,经CDF匹配法对FY-2D和2E的TBB分别进行归一化处理,将使得FY-2的亮温与MTSAT具有可比性,便于比较国内外的台风定强分析结果和算法差异。