期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Hαcounterparts of X-ray bright points in the solar atmosphere
1
作者 ZHANG Ping FANG Cheng ZHANG QingMin 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2012年第5期907-914,共8页
X-ray bright points (XBPs) are small-scale brightenings in the solar corona. Their counterparts in the lower atmosphere, how- ever, are poorly investigated. In this paper, we study the counterparts of XBPs in the up... X-ray bright points (XBPs) are small-scale brightenings in the solar corona. Their counterparts in the lower atmosphere, how- ever, are poorly investigated. In this paper, we study the counterparts of XBPs in the upper chromosphere where the Hot line center is formed. The XBPs were observed by the X-ray Telescope (XRT) aboard the Hinode spacecraft during the observing plan (HOP0124) in August 2009, coordinated with the Solar Magnetic Activity Research Telescope (SMART) in the Kwasan and Hida Observatory, Kyoto University. It is found that there are 77 Hot brightenings in the same field of view of XRT, and among 57 XBPs, 29 have counterparts in the Hot channel. We found three types of relationship: Types a, b and c, correspond- ing to XBPs appearing first, Hot brightenings occurring first and no respective correspondence between them. Most of the strong XBPs belong to Type a. The Hot counterparts generally have double-kernel structures associated with magnetic bipoles and are cospatial with the footpoints of the XBP loops. The average lag time is -3 minutes. This implies that for Type a the heating, presumably through magnetic reconnection, occurs first in the solar upper atmosphere and then goes downwards along the small-scale magnetic loops that comprise the XBPs. In this case, the thermal conduction plays a dominant role over the non-thermal heating. Only a few events belong to Type b, which could happen when magnetic reconnection occurs in the chromosphere and produces an upward jet which heats the upper atmosphere and causes the XBP. About half of the XBPs belong to Type c. Generally they have weak emission in SXR. About 62% Hot brightenings have no corresponding XBPs. Most of them are weak and have single structures. 展开更多
关键词 solar activity bright points small-scale brightenings
原文传递
Magnetic non-potentiality on the quiet Sun and the filigree 被引量:3
2
作者 Meng Zhao Jing-Xiu Wang Chun-Lan Jin Gui-Ping Zhou 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2009年第8期933-944,共12页
From the observed vector magnetic fields by the Solar Optical Telescope/ Spectro-Polarimeter aboard the satellite Hinode, we have examined whether or not the quiet Sun magnetic fields are non-potential, and how the G-... From the observed vector magnetic fields by the Solar Optical Telescope/ Spectro-Polarimeter aboard the satellite Hinode, we have examined whether or not the quiet Sun magnetic fields are non-potential, and how the G-band filigrees and Ca II network bright points (NBPs) are associated with the magnetic non-potentiality. A sizable quiet region in the disk center is selected for this study. The new findings by the study are as follows. (1) The magnetic fields of the quiet region are obviously non-potential. The region-average shear angle is 40°, the average vertical current is 0.016A m^-2, and the average free magnetic energy density, 2.7× 10^2erg cm^-3. The magnitude of these non-potential quantities is comparable to that in solar active regions. (2) There are overall correlations among current helicity, free magnetic energy and longitudinal fields. The magnetic non-potentiality is mostly concentrated in the close vicinity of network elements which have stronger longitudinal fields. (3) The filigrees and NBPs are magnetically characterized by strong longitudinal fields, large electric helicity, and high free energy density. Because the selected region is away from any enhanced network, these new results can generally be applied to the quiet Sun. The findings imply that stronger network elements play a role in high magnetic non-potentiality in heating the solar atmosphere and in conducting the solar wind. 展开更多
关键词 SUN magnetic fields -- Sun photosphere -- Sun network bright point
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部