Green Perovskite Light-Emitting Diodes(PeLEDs)have attracted wide attention for full spectrum displays.However,the inferior film morphology and luminescence property of quasi-two-dimensional(quasi-2D)perovskite layers...Green Perovskite Light-Emitting Diodes(PeLEDs)have attracted wide attention for full spectrum displays.However,the inferior film morphology and luminescence property of quasi-two-dimensional(quasi-2D)perovskite layers limit the photoelectric property of the PeLEDs.In this paper,the effect of strontium(Sr)doped in quasi-2D perovskite layers is investigated to obtain a high-quality active layer.The morphologies and optical properties of Sr-doped quasi-2D perovskite films with different concentrations are studied.With the addition of strontium,more low-dimensional-layer perovskite phases(n D 2 and n D 3)appear in quasi-2D perovskite films,providing efficient intraband carrier funneling pathway and facilitating radiative recombination.The photoluminescence(PL)peak intensity of optimized Sr-doped quasi-2D perovskite layers increases 50%compared with the non-strontium counterpart.Moreover,green PeLEDs based on a Sr-doped quasi-2D perovskite layer reach a maximum luminance(Lmax)of 2943.77 cd/m^(2),which is three times of the control device.The electroluminescence(EL)peaks of Maximum External Quantum Efficiency(MEQE)and Lmax of Sr-doped PeLEDs exhibite a slight shift,indicating the excellent stability and performance of Sr-doped devices.The optimized device can continuously operate for 360 s at MEQE driving voltage,resulting in a half-lifetime of60 s,which is 3-fold greater than that of the control PeLEDs.展开更多
基金supported by the National Natural Science Foundation of China (Nos.61875186,61975196,and 61674140)。
文摘Green Perovskite Light-Emitting Diodes(PeLEDs)have attracted wide attention for full spectrum displays.However,the inferior film morphology and luminescence property of quasi-two-dimensional(quasi-2D)perovskite layers limit the photoelectric property of the PeLEDs.In this paper,the effect of strontium(Sr)doped in quasi-2D perovskite layers is investigated to obtain a high-quality active layer.The morphologies and optical properties of Sr-doped quasi-2D perovskite films with different concentrations are studied.With the addition of strontium,more low-dimensional-layer perovskite phases(n D 2 and n D 3)appear in quasi-2D perovskite films,providing efficient intraband carrier funneling pathway and facilitating radiative recombination.The photoluminescence(PL)peak intensity of optimized Sr-doped quasi-2D perovskite layers increases 50%compared with the non-strontium counterpart.Moreover,green PeLEDs based on a Sr-doped quasi-2D perovskite layer reach a maximum luminance(Lmax)of 2943.77 cd/m^(2),which is three times of the control device.The electroluminescence(EL)peaks of Maximum External Quantum Efficiency(MEQE)and Lmax of Sr-doped PeLEDs exhibite a slight shift,indicating the excellent stability and performance of Sr-doped devices.The optimized device can continuously operate for 360 s at MEQE driving voltage,resulting in a half-lifetime of60 s,which is 3-fold greater than that of the control PeLEDs.