Lop Nur is located at the eastmost end of the Tarim Basin in Xinjiang,Northwestern China.This study reviews the hydrochemical characteristics and evolution of underground brine in Lop Nur,based on analytical data from...Lop Nur is located at the eastmost end of the Tarim Basin in Xinjiang,Northwestern China.This study reviews the hydrochemical characteristics and evolution of underground brine in Lop Nur,based on analytical data from 429 water samples(mainly brine).It is found that in the NE-SW direction,from the periphery to the Luobei sub-depression,while the hydrochemical type varies from the sodium sulfate subtype(S)to the magnesium sulfate subtype(M),the corresponding brine in the phase diagram transfers from the thenardite phase(Then)area,through the bloedite phase(Blo),epsomite phase(Eps),picromerite phase(Picro),finally reaching the sylvite phase(Syl)area.As for the degree of evolution,the sequence is the periphery<Luobei horizontally and the overlying glauberite brine<the underlying clastic brine vertically.It is concluded that the oxygen and hydrogen isotopic compositions of the brine have evidently been affected through the effects of evaporation and altitude,as well as the changes in local water circulation in recent years.Boron and chloride isotopic compositions show that the glauberite brine is formed under more arid conditions than the clastic one.The strontium isotopic composition indicates that the Lop Nur brine primarily originates from surface water;however,deep recharge may also be involved in the evolution of the brine,according to previous noble gas studies.It is confirmed that the brine in Lop Nur has become enriched with potassium prior to halite precipitation over the full course of the salt lake's evolution.Based on chemical compositions of brine from drillhole LDK01 and previous lithological studies,the evolution of the salt lake can be divided into three stages and it is inferred that the brine in Lop Nur may have undergone at least two significant concentration-dilution periods.展开更多
Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines gi...Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines give rise to challenges,such as prolonged lithium extraction periods,diminished lithium extraction efficiency,and considerable environmental pollution.In this work,Li FePO4(LFP)served as the electrode material for electrochemical lithium extraction.The conductive network in the LFP electrode was optimized by adjusting the type of conductive agent.This approach resulted in high lithium extraction efficiency and extended cycle life.When the single conductive agent of acetylene black(AB)or multiwalled carbon nanotubes(MWCNTs)was replaced with the mixed conductive agent of AB/MWCNTs,the average diffusion coefficient of Li+in the electrode increased from 2.35×10^(-9)or 1.77×10^(-9)to 4.21×10^(-9)cm^(2)·s^(-1).At the current density of 20 mA·g^(-1),the average lithium extraction capacity per gram of LFP electrode increased from 30.36 mg with the single conductive agent(AB)to 35.62 mg with the mixed conductive agent(AB/MWCNTs).When the mixed conductive agent was used,the capacity retention of the electrode after 30 cycles reached 82.9%,which was considerably higher than the capacity retention of 65.8%obtained when the single AB was utilized.Meanwhile,the electrode with mixed conductive agent of AB/MWCNTs provided good cycling performance.When the conductive agent content decreased or the loading capacity increased,the electrode containing the mixed conductive agent continued to show excellent electrochemical performance.Furthermore,a self-designed,highly efficient,continuous lithium extraction device was constructed.The electrode utilizing the AB/MWCNT mixed conductive agent maintained excellent adsorption capacity and cycling performance in this device.This work provides a new perspective for the electrochemical extraction of lithium using LFP electrodes.展开更多
High-density brines have been recognized beneficial for oilfield applications,with various key areas such as drilling,completion and formation evaluation.High-density brines can play a critical role in the development...High-density brines have been recognized beneficial for oilfield applications,with various key areas such as drilling,completion and formation evaluation.High-density brines can play a critical role in the development and production of oil and gas reservoirs during the primary,secondary,and tertiary recovery phases.High-density brines can enhance the mobility and recovery of the oil in the reservoir by controlling the density and viscosity.However,a less attention has been given to the application of high-density brine in the area of reservoir development.This review is shedding light on a concise overview of reservoir development stages in association with the recovery mechanisms.In addition,most possible applications of high-density fluids have also been reviewed in the field of the reservoir development.In summary,this review state that high-density brines can be used to stimulate reservoirs by hydraulic fracturing during the primary recovery phase.However,the risk of increased interfacial tension,which relies on the density difference of two fluids,can trap more residual oil relative to conventional water flooding.In addition,high-density brines are effective in decreasing the mobility ratio and facilitating favorable displacement during polymer flooding.However,they can be least effective in alkaline flooding due to the high IFT related to large density differences.Thus,it is suggested to consider the utilization of sustainable high-density brines by taking into account effective factors in petroleum engineering aspects such as stimulation,secondary recovery and polymer flooding.展开更多
[Objectives]This study was conducted to compare the effects of different curing processes on the characteristics of marinated beef.[Methods]Marinated beef was obtained by two curing processes:static curing and injecti...[Objectives]This study was conducted to compare the effects of different curing processes on the characteristics of marinated beef.[Methods]Marinated beef was obtained by two curing processes:static curing and injection and vacuum tumbling curing.The effects of the two curing processes on the production rate,curing absorption rate,water content,soluble protein content,amino acid nitrogen content,texture characteristics and microstructure of the product were compared.[Results]Compared with static curing,the production rate of marinated beef increased by 10%,the curing absorption rate increased by 28%,the texture and microstructure were improved,and the water content increased,while the soluble protein content decreased.As a result,the sensory score was higher.There was no significant difference in the content of amino acid nitrogen,but it decreased compared with raw meat.To sum up,injection and vacuum tumbling curing is more conducive to the processing of marinated beef.[Conclusions]This study provides a theoretical basis for the industrial production of marinated beef,and lays a foundation for in-depth exploration of injection and vacuum tumbling curing technique of marinated beef.展开更多
Besides Li+ and Mg2+, the electrochemical behavior of Na^+ and K+ in LiFePO4/FePO4 structures was studied since they naturally coexist with Li+ and Mg2+ in brine. The cyclic voltammogram (CV) results indicated...Besides Li+ and Mg2+, the electrochemical behavior of Na^+ and K+ in LiFePO4/FePO4 structures was studied since they naturally coexist with Li+ and Mg2+ in brine. The cyclic voltammogram (CV) results indicated that Na+ exhibits some reversibility in LiFePO4/FePO4 structures. Its reduction peak appears at -0.511 V, more negative than that of Li+ (-0.197 V), meaning that a relatively positive potential is beneficial for decreasing Na+ insertion. The reduction peak of K+ could not be found clearly, indicating that K+ is difficult to insert into the FePO4 structure. Furthermore, technical experiments using real brine with a super high Mg/Li ratio (493) at a cell voltage of 0.7V showed that the final extracted capacity of Li+, Mg2+ and Na+ that can be attained in 1 g LiFePO4 is 24.1 mg, 7.32 mg and 4.61 mg, respectively. The Mg/Li ratio can be reduced to 0.30 from 493, and the Na/Li ratio to 0.19 from 16.7, which proves that, even in super high Mg/Li ratio brine, if a cell voltage is appropriately controlled, it is possible to separate Li^+ and other impurities effectively.展开更多
The residues of salt lake brine from which potassium had been removed were used to extract Rb+ and Cs+ together with a sulphonated kerosene(SK) solution of 1.0 mol/L 4-tert-butyl-2-(α-methylbenzyl) phenol(t-BA...The residues of salt lake brine from which potassium had been removed were used to extract Rb+ and Cs+ together with a sulphonated kerosene(SK) solution of 1.0 mol/L 4-tert-butyl-2-(α-methylbenzyl) phenol(t-BAMBP). Rb+ and Cs+ were enriched and separated effectively by precipitating Mg2+ before extraction and by scrubbing out K+ and Na+ repeatedly before stripping. The effects of the volume ratio of organic phase to aqueous extraction phase(O/A), alkalinity of aqueous phase(c(OH)-), interference from K+ and Mg2+, and ratio the volume of organic phase to aqueous scrubbing phase(O/A′) were investigated. The experimental brine was extracted optimally by 5-stage extraction with 1.0 mol/L t-BAMBP in SK, c(OH-)=1 mol/L, and O/A=1:1. The scrubbing yield of rubidium was only about 10.5% when the extraction solvent was washed 3 times with 1×10-4 mol/L Na OH at O/A′=1:0.5. After 5-stage countercurrent extraction, the final extraction yields of Rb+ and Cs+ reached 95.04% and 99.80%, respectively.展开更多
Salt lake brine was reacted with activated aluminum-based alloys and lithium was precipitated.The effects of aluminum-based alloys on precipitating lithium were investigated and the reasonable alloy used to extract li...Salt lake brine was reacted with activated aluminum-based alloys and lithium was precipitated.The effects of aluminum-based alloys on precipitating lithium were investigated and the reasonable alloy used to extract lithium from brine was obtained.The effects of the mole ratio of Al to Li and Ca content of Al-Ca alloy,the initial concentration of lithiumion ion in solution,reaction temperature and reaction time on the adsorption rate of lithium were studied,and the optimized process parameters were determined.The results show that the mole ratio of Al to Li and Ca content of Al-Ca alloy and reaction temperature have great influences on the precipitation rate of lithium.The precipitation rate of lithium reaches 94.6% under the optimal condition,indicating that Al-Ca alloy is suitable for the extraction of lithium from salt lake brine.展开更多
[Objective] This study aimed to screen an Na+/H+ antiporter gene from the halophiles colonizing in the Dagong Ancient Brine Well in Zigong City, China, and then analyze the gene structure and properties of the prote...[Objective] This study aimed to screen an Na+/H+ antiporter gene from the halophiles colonizing in the Dagong Ancient Brine Well in Zigong City, China, and then analyze the gene structure and properties of the protein encoded by this gene. [Method] Metagenomic DNA libraries of halophiles from the Dagong Ancient Brine Well were used for screening genes with Na+/H+ antiporter activity in antiporter-defi- cient E. coil KNabc strain by functional complementation. Then the start codon, stop codon, ORF, -35 region, -10 region and SD sequence of Na~/H+ antiporter gene, as well as the molecular weight, isoelectric point, hydrophobic region, transmembrane domain, phyletic evolution and salt resistance of protein encoded by the gene were investigated. [Result] A new Na+/H+ antiporter gene m-nha was obtained, which ,ren- dered the antiporter-negative mutant E. coil KNabc cells with both the resistance to Na+ and the ability to grow under alkaline conditions. [Conclusion] The structure and amino acid sequence of M-Nha was different from the previously reported Na+/H~ antiporters, and the m-nha gene disclosed from the Dagong Ancient Brine Well was identified as a novel Na+/H+ antiporter gene. This study was significant not only in helping us understand the salt tolerance of halophiles in ancient brine wells and develop and utilize the genes resource, but also in exploring new salt-tolerant genes.展开更多
[ Objective ] The paper was to study the effect of sea brine on the growth of Fusarium graminearum. [ Method] The inhibition rate of sea brine against F. gram/nearum was measured using mycelial growth rate method. The...[ Objective ] The paper was to study the effect of sea brine on the growth of Fusarium graminearum. [ Method] The inhibition rate of sea brine against F. gram/nearum was measured using mycelial growth rate method. The inhibition effect of sea brine against infection of F. gram/nearum on maize was measured through leaf culture method in vitro. [Result] With the decrease of sea brine concentration, its inhibition against F. gram/nearum had no remarkable regulation, which first decreased, then increased, and finally decreased. It had the best inhibition effect as the concentration was 0.005 0% with the inhibition rate of 31.2%. 0.050 0% sea brine had the best inhibition effect against the infection of F. graminearum with the inhibition rate of 44.3%. [ Conclusion] The results provided theoretical basis for the application of sea brine in the aspects of plant diseases and vests control展开更多
He-Ar isotopic compositions of fluid inclusions trapped in pyrites from some representative PGE-polymetallic deposits in Lower Cambrian black rock series in South China were analyzed by using an inert gas isotopic mas...He-Ar isotopic compositions of fluid inclusions trapped in pyrites from some representative PGE-polymetallic deposits in Lower Cambrian black rock series in South China were analyzed by using an inert gas isotopic mass spectrometer. The results show that the ore-forming fluids possess a low 3He/4He ratio, varying from 0.43×10-8 to 26.39×10-8, with corresponding R/Ra value of 0.003-0.189. The 40Ar/36Ar ratios are 258-287, close to those of air saturated water (ASW). He-Ar isotopic indicator studies show that the ore-forming fluids were mainly derived from the formation water or basinal hot brine and sea water, while the content of mantle-derived fluid or deep-derived magmatic water might be negligible. The PGE-polymetallic mineralization might be related to the evolution of the Caledonian miogeosynclines distributed along the southern margin of the Yangtze Craton. During the Early Cambrian, the formation water or basinal hot brine trapped in Caledonian basins which accumulated giant thick sediments was expelled and migrated laterally along strata because of the pressure generated by overlying sediments. The basinal hot brine ascended along faults, mixed with sea water and finally deposited ore minerals.展开更多
We studied the effect of pH (pH 5, 6, 7 and 8) on the hatching percentage, survival and reproduction of Artemia strains in Bohai Bay salt ponds. Strains included parthenogenetic Artemia from Bohai Bay (BHB), Artem...We studied the effect of pH (pH 5, 6, 7 and 8) on the hatching percentage, survival and reproduction of Artemia strains in Bohai Bay salt ponds. Strains included parthenogenetic Artemia from Bohai Bay (BHB), Artemiafranciscana from San Francisco Bay, and A. franciscana artificially produced in salt ponds in Vietnam. The latter was included as a potential inoculum for biological management of salt ponds. The hatching percentage of cysts after 24 h and the survival rate of the tested Artemia strains were significantly reduced when exposed to a culture medium at pH 5 for 18 d (P〈0.05). The tolerance of Artemia to 48 h acid exposure varied with developmental stage, increasing in the following order: juvenile, nauplii, pre-adult, with maximum tolerance in adults. All strains of Artemia tested could not reproduce at pH 5. At pH levels from pH 6-8, a higher pH generally resulted in a shorter brood interval and enhanced ovoviviparity. Hence, we suggest that brine acidification has a negative impact on Artemia populations in the Bohai Bay saltworks. Inoculation of Artemia with either local parthenogenetic Artemia or exotic A. franeiscana should be feasible at pH 7-8.展开更多
The Mengyejing potash deposit is located in the southern port of the Simao Basin, Yunnan Province, and is hosted in mid-Cretaceous strata. The chemical compositions of fluid inclusions in halite crystals, collected fr...The Mengyejing potash deposit is located in the southern port of the Simao Basin, Yunnan Province, and is hosted in mid-Cretaceous strata. The chemical compositions of fluid inclusions in halite crystals, collected from the level-610 adit in the deposit, were analysed by laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS). The results show that the brine is of the Na-K-Mg-Ca-Cl type and has K concentrations that are distinctly higher than those of Mg and Ca, unlike normal brines associated with Cretaceous halite. The high K concentrations indicate that the degree of evaporation of the ancient Mengyejing saline lake was very high, reaching the sylvite deposition stage but rarely reaching the carnallite deposition stage. The trajectory of the H and O isotopic compositions of the brines in the halite-hosted fluid inclusions corresponds to intense evaporation, indicating that the net evaporation exceeded the net inflow of brines. These brine compositions in halite-hosted fluid inclusions were likely formed by the dissolution of previously deposited K-bearing minerals by fresh continental and/or seawater, forming a type of modified seawater, with deep hydrothermal fluids potentially supplying additional potassium. The basin likely experienced multiple seawater incursion, dissolution and redeposition events in a high-temperature environment with high evaporation rates.展开更多
The extraction of lithium from salt lake brine in the Chinese Qaidam Basin is challenging due to its high Mg/Li and Na/Li ratios. Herein, we utilized a reaction-coupled separation technology to separate sodium and lit...The extraction of lithium from salt lake brine in the Chinese Qaidam Basin is challenging due to its high Mg/Li and Na/Li ratios. Herein, we utilized a reaction-coupled separation technology to separate sodium and lithium ions from a high Na/Li ratio brine(Na/Li = 48.7, w/w) and extracted lithium with Li Al-layered double hydroxides(Li Al-LDHs). The Li Al-LDHs act as lithium-ion-selective capturing materials from multication brines. That is, the lithium ions selectively enter the solid phase to form Li Al-LDHs, and the sodium ions are still retained in the liquid phase. This is because the lithium ions can be incorporated into the structural vacancies of LiAl-LDHs, whereas the sodium ions cannot. The effects of reaction conditions on lithium loss and separation efficiency were investigated at both the nucleation and the crystallization stage, e.g., the nucleation rotating speed, the Li/Al molar ratio, the crystallization temperature and time, and co-existing cations. The lithium loss is as low as 3.93% under optimal separation conditions.The sodium ions remained in the solution. Consequently, an excellent Na/Li separation efficiency was achieved by this reaction-coupled separation technology. These findings confirm that LiAl-LDHs play a critical function in selectively capturing lithium ions from brines with a high Na/Li ratio, which is useful for the extraction of lithium ions from the abundant salt lake brine resources in China.展开更多
Lithium in nature mainly exists in the forms of solid minerals and ionic liquid.More than 150 lithium minerals exist,which are mainly pegmatite mineral including triphane,lithionite and petalite.Liquid lithium mainly
High-grade dehydration of amphibolite-facies rocks to granulite-facies is a process that can involve partial melting, fluid-aided solid-state dehydration, or varying degrees of both. On the localized meter scale, soli...High-grade dehydration of amphibolite-facies rocks to granulite-facies is a process that can involve partial melting, fluid-aided solid-state dehydration, or varying degrees of both. On the localized meter scale, solid-state dehydration, due to CO:-rich fluids traveling along some fissure or crack and subsequently outwards along the mineral grain boundaries of the surrounding rock, normally is the means by which the breakdown of biotite and amphibole to orthopyroxene and clinopyroxene occur. Various mineral textures and changes in mineral chemistry seen in these rocks are also seen in more regional orthopyroxene-clinopyroxene-bearing rocks which, along with accompanying amphibolite-facies rocks, form traverses of lower crust. This suggests that solid-state dehydration during high-grade metamorphism could occur on a more regional scale. The more prominent of these fluid-induced textures in the granulite- facies portion of the traverse take the form of micro-veins of K-feldspar along quartz grain boundaries and the formation of monazite inclusions in fluorapatite. The fluids believed responsible take the form of concentrated NaCl- and KCl- brines from a basement ultramafic magma heat source traveling upwards along grain boundaries. Additional experimental work involving CaSO4 dissolution in NaCl-brines, coupled with natural observation of oxide and sulfide mineral associations in granulite-facies rocks, have demonstrated the possibility that NaCl-brines, with a CaSO4 component, could impose the oxygen fugacity on these rocks as opposed to the oxygen fugacity being inherent in their protoliths. These results, taken together, lend credence to the idea that regional chemical modification of the lower crust is an evolutionary process controlled by fluids migrating upwards from the lithospheric mantle along grain boundaries into and through the lower crust where they both modify the rock and are modified by it.Their presence allows for rapid mass and heat transport and subsequent mineral genesis and mineral re- equilibration in the rocks through which they pass.展开更多
With the technological development of exploitation and separation,the primary source of lithium has gradually changed from ore to brine,which has become the main raw material,accounting for more than 80% of the total ...With the technological development of exploitation and separation,the primary source of lithium has gradually changed from ore to brine,which has become the main raw material,accounting for more than 80% of the total production.Resources of lithium-bearing brine are abundant in China.This paper has summarized the spatial and temporal distribution,characteristics,and formation mechanism of the lithium-rich brine in China,aiming to provide a comprehensive set of guidelines for future lithium exploitation from brines.Lithium brines usually exist in modem saline lakes and deep underground sedimentary rocks as subsurface brines.The metallogenic epoch of China's lithium-rich brine spans from the Triassic to the Quaternary,and these brines exhibit obvious regional distribution characteristics.Modem lithium-rich saline lakes are predominately located in the Qinghai-Tibet Plateau.In comparison,the subsurface lithium-rich brines are mainly distributed in the sedimentary basins of Sichuan,Hubei,Jiangxi,and the western part of the Qaidam Basin.Lithium-rich saline lakes are chloride-enriched,sulfate-enriched,and carbonateenriched,while the deep lithium-rich brines are mainly chloride-enriched.On the whole,the value of Mg/Li in deep brine is generally lower than that of brine in saline lakes.The genesis of lithium-rich brines in China is not uniform,generally there are two processes,which are respectively suitable for salt lakes and deep brine.展开更多
Accelerating the development of lithium resources has attracted a great deal of attention with the explosive growth of new energy vehicles.As a new technology,electrochemical lithium ion pumping(ELIP)is featured by en...Accelerating the development of lithium resources has attracted a great deal of attention with the explosive growth of new energy vehicles.As a new technology,electrochemical lithium ion pumping(ELIP)is featured by environment-friendly,low energy consumption and high efficiency.This review summarizes the research progress in ELIP,and focuses on the evaluation methods,electrode materials and electrochemical systems of ELIP.It can be concluded that ELIP is expected to achieve an industrial application and has a promising prospect.In addition,challenges and perspective of electrochemical lithium extraction are also highlighted.展开更多
Lithium is considered to be the most important energy metal of the 21st century.Because of the development trend of global electrification,the consumption of lithium has increased significantly over the last decade,an...Lithium is considered to be the most important energy metal of the 21st century.Because of the development trend of global electrification,the consumption of lithium has increased significantly over the last decade,and it is foreseeable that its demand will continue to increase for a long time.Limited by the total amount of lithium on the market,lithium extraction from natural resources is still the first choice for the rapid development of emerging industries.This paper reviews the recent technological developments in the extraction of lithium from natural resources.Existing methods are summarized by the main resources,such as spodumene,lepidolite,and brine.The advantages and disadvantages of each method are compared.Finally,reasonable suggestions are proposed for the development of lithium extraction from natural resources based on the understanding of existing methods.This review provides a reference for the research,development,optimization,and industrial application of future processes.展开更多
基金The Major Projects of Xinjiang Uyghur Autonomous Region of China(Grant Nos.2020A03005-2 and 2022A03009-2)from the Chinese governmentthe National Natural Science Foundation of China(Grant No.40830420)provided the funding for this study。
文摘Lop Nur is located at the eastmost end of the Tarim Basin in Xinjiang,Northwestern China.This study reviews the hydrochemical characteristics and evolution of underground brine in Lop Nur,based on analytical data from 429 water samples(mainly brine).It is found that in the NE-SW direction,from the periphery to the Luobei sub-depression,while the hydrochemical type varies from the sodium sulfate subtype(S)to the magnesium sulfate subtype(M),the corresponding brine in the phase diagram transfers from the thenardite phase(Then)area,through the bloedite phase(Blo),epsomite phase(Eps),picromerite phase(Picro),finally reaching the sylvite phase(Syl)area.As for the degree of evolution,the sequence is the periphery<Luobei horizontally and the overlying glauberite brine<the underlying clastic brine vertically.It is concluded that the oxygen and hydrogen isotopic compositions of the brine have evidently been affected through the effects of evaporation and altitude,as well as the changes in local water circulation in recent years.Boron and chloride isotopic compositions show that the glauberite brine is formed under more arid conditions than the clastic one.The strontium isotopic composition indicates that the Lop Nur brine primarily originates from surface water;however,deep recharge may also be involved in the evolution of the brine,according to previous noble gas studies.It is confirmed that the brine in Lop Nur has become enriched with potassium prior to halite precipitation over the full course of the salt lake's evolution.Based on chemical compositions of brine from drillhole LDK01 and previous lithological studies,the evolution of the salt lake can be divided into three stages and it is inferred that the brine in Lop Nur may have undergone at least two significant concentration-dilution periods.
基金financially supported by the National Natural Science Foundation of China(No.52072322)the Department of Science and Technology of Sichuan Province,China(Nos.23GJHZ0147,23ZDYF0262,2022YFG0294,and 2019-GH02-00052-HZ)。
文摘Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines give rise to challenges,such as prolonged lithium extraction periods,diminished lithium extraction efficiency,and considerable environmental pollution.In this work,Li FePO4(LFP)served as the electrode material for electrochemical lithium extraction.The conductive network in the LFP electrode was optimized by adjusting the type of conductive agent.This approach resulted in high lithium extraction efficiency and extended cycle life.When the single conductive agent of acetylene black(AB)or multiwalled carbon nanotubes(MWCNTs)was replaced with the mixed conductive agent of AB/MWCNTs,the average diffusion coefficient of Li+in the electrode increased from 2.35×10^(-9)or 1.77×10^(-9)to 4.21×10^(-9)cm^(2)·s^(-1).At the current density of 20 mA·g^(-1),the average lithium extraction capacity per gram of LFP electrode increased from 30.36 mg with the single conductive agent(AB)to 35.62 mg with the mixed conductive agent(AB/MWCNTs).When the mixed conductive agent was used,the capacity retention of the electrode after 30 cycles reached 82.9%,which was considerably higher than the capacity retention of 65.8%obtained when the single AB was utilized.Meanwhile,the electrode with mixed conductive agent of AB/MWCNTs provided good cycling performance.When the conductive agent content decreased or the loading capacity increased,the electrode containing the mixed conductive agent continued to show excellent electrochemical performance.Furthermore,a self-designed,highly efficient,continuous lithium extraction device was constructed.The electrode utilizing the AB/MWCNT mixed conductive agent maintained excellent adsorption capacity and cycling performance in this device.This work provides a new perspective for the electrochemical extraction of lithium using LFP electrodes.
基金supported by the King Fahd University of Pe-troleum and Minerals[Grant No.KU201004]Khalifa University[Grant No.KU-KFUPM-2020-28]H2FC2303 DSR Project of KFUPM.
文摘High-density brines have been recognized beneficial for oilfield applications,with various key areas such as drilling,completion and formation evaluation.High-density brines can play a critical role in the development and production of oil and gas reservoirs during the primary,secondary,and tertiary recovery phases.High-density brines can enhance the mobility and recovery of the oil in the reservoir by controlling the density and viscosity.However,a less attention has been given to the application of high-density brine in the area of reservoir development.This review is shedding light on a concise overview of reservoir development stages in association with the recovery mechanisms.In addition,most possible applications of high-density fluids have also been reviewed in the field of the reservoir development.In summary,this review state that high-density brines can be used to stimulate reservoirs by hydraulic fracturing during the primary recovery phase.However,the risk of increased interfacial tension,which relies on the density difference of two fluids,can trap more residual oil relative to conventional water flooding.In addition,high-density brines are effective in decreasing the mobility ratio and facilitating favorable displacement during polymer flooding.However,they can be least effective in alkaline flooding due to the high IFT related to large density differences.Thus,it is suggested to consider the utilization of sustainable high-density brines by taking into account effective factors in petroleum engineering aspects such as stimulation,secondary recovery and polymer flooding.
文摘[Objectives]This study was conducted to compare the effects of different curing processes on the characteristics of marinated beef.[Methods]Marinated beef was obtained by two curing processes:static curing and injection and vacuum tumbling curing.The effects of the two curing processes on the production rate,curing absorption rate,water content,soluble protein content,amino acid nitrogen content,texture characteristics and microstructure of the product were compared.[Results]Compared with static curing,the production rate of marinated beef increased by 10%,the curing absorption rate increased by 28%,the texture and microstructure were improved,and the water content increased,while the soluble protein content decreased.As a result,the sensory score was higher.There was no significant difference in the content of amino acid nitrogen,but it decreased compared with raw meat.To sum up,injection and vacuum tumbling curing is more conducive to the processing of marinated beef.[Conclusions]This study provides a theoretical basis for the industrial production of marinated beef,and lays a foundation for in-depth exploration of injection and vacuum tumbling curing technique of marinated beef.
基金Project(K1205034-11) supported by Technology Program of Changsha,China
文摘Besides Li+ and Mg2+, the electrochemical behavior of Na^+ and K+ in LiFePO4/FePO4 structures was studied since they naturally coexist with Li+ and Mg2+ in brine. The cyclic voltammogram (CV) results indicated that Na+ exhibits some reversibility in LiFePO4/FePO4 structures. Its reduction peak appears at -0.511 V, more negative than that of Li+ (-0.197 V), meaning that a relatively positive potential is beneficial for decreasing Na+ insertion. The reduction peak of K+ could not be found clearly, indicating that K+ is difficult to insert into the FePO4 structure. Furthermore, technical experiments using real brine with a super high Mg/Li ratio (493) at a cell voltage of 0.7V showed that the final extracted capacity of Li+, Mg2+ and Na+ that can be attained in 1 g LiFePO4 is 24.1 mg, 7.32 mg and 4.61 mg, respectively. The Mg/Li ratio can be reduced to 0.30 from 493, and the Na/Li ratio to 0.19 from 16.7, which proves that, even in super high Mg/Li ratio brine, if a cell voltage is appropriately controlled, it is possible to separate Li^+ and other impurities effectively.
基金Project(20606008)supported by the National Natural Science Foundation of ChinaProject(11070210)supported by the Fundamental Research Funds for the Central Universities of China
文摘The residues of salt lake brine from which potassium had been removed were used to extract Rb+ and Cs+ together with a sulphonated kerosene(SK) solution of 1.0 mol/L 4-tert-butyl-2-(α-methylbenzyl) phenol(t-BAMBP). Rb+ and Cs+ were enriched and separated effectively by precipitating Mg2+ before extraction and by scrubbing out K+ and Na+ repeatedly before stripping. The effects of the volume ratio of organic phase to aqueous extraction phase(O/A), alkalinity of aqueous phase(c(OH)-), interference from K+ and Mg2+, and ratio the volume of organic phase to aqueous scrubbing phase(O/A′) were investigated. The experimental brine was extracted optimally by 5-stage extraction with 1.0 mol/L t-BAMBP in SK, c(OH-)=1 mol/L, and O/A=1:1. The scrubbing yield of rubidium was only about 10.5% when the extraction solvent was washed 3 times with 1×10-4 mol/L Na OH at O/A′=1:0.5. After 5-stage countercurrent extraction, the final extraction yields of Rb+ and Cs+ reached 95.04% and 99.80%, respectively.
基金Project(U1407137)supported by the National Natural Science Foundation of China
文摘Salt lake brine was reacted with activated aluminum-based alloys and lithium was precipitated.The effects of aluminum-based alloys on precipitating lithium were investigated and the reasonable alloy used to extract lithium from brine was obtained.The effects of the mole ratio of Al to Li and Ca content of Al-Ca alloy,the initial concentration of lithiumion ion in solution,reaction temperature and reaction time on the adsorption rate of lithium were studied,and the optimized process parameters were determined.The results show that the mole ratio of Al to Li and Ca content of Al-Ca alloy and reaction temperature have great influences on the precipitation rate of lithium.The precipitation rate of lithium reaches 94.6% under the optimal condition,indicating that Al-Ca alloy is suitable for the extraction of lithium from salt lake brine.
基金Supported by Chunhui Plan of Ministry of Education(Z2010101)Open Fund of Food Biotechnology Key Laboratory of Sichuan Province(SZJJ2009-014)Scientific Research Foundation of Xihua University(000022)~~
文摘[Objective] This study aimed to screen an Na+/H+ antiporter gene from the halophiles colonizing in the Dagong Ancient Brine Well in Zigong City, China, and then analyze the gene structure and properties of the protein encoded by this gene. [Method] Metagenomic DNA libraries of halophiles from the Dagong Ancient Brine Well were used for screening genes with Na+/H+ antiporter activity in antiporter-defi- cient E. coil KNabc strain by functional complementation. Then the start codon, stop codon, ORF, -35 region, -10 region and SD sequence of Na~/H+ antiporter gene, as well as the molecular weight, isoelectric point, hydrophobic region, transmembrane domain, phyletic evolution and salt resistance of protein encoded by the gene were investigated. [Result] A new Na+/H+ antiporter gene m-nha was obtained, which ,ren- dered the antiporter-negative mutant E. coil KNabc cells with both the resistance to Na+ and the ability to grow under alkaline conditions. [Conclusion] The structure and amino acid sequence of M-Nha was different from the previously reported Na+/H~ antiporters, and the m-nha gene disclosed from the Dagong Ancient Brine Well was identified as a novel Na+/H+ antiporter gene. This study was significant not only in helping us understand the salt tolerance of halophiles in ancient brine wells and develop and utilize the genes resource, but also in exploring new salt-tolerant genes.
基金Supported by Key Projects in Social Development Field of Guangdong Province,Science and Technology Department of Guangdong Province "Green Using Technology of Waste Brine"(A2009011-007(c))~~
文摘[ Objective ] The paper was to study the effect of sea brine on the growth of Fusarium graminearum. [ Method] The inhibition rate of sea brine against F. gram/nearum was measured using mycelial growth rate method. The inhibition effect of sea brine against infection of F. gram/nearum on maize was measured through leaf culture method in vitro. [Result] With the decrease of sea brine concentration, its inhibition against F. gram/nearum had no remarkable regulation, which first decreased, then increased, and finally decreased. It had the best inhibition effect as the concentration was 0.005 0% with the inhibition rate of 31.2%. 0.050 0% sea brine had the best inhibition effect against the infection of F. graminearum with the inhibition rate of 44.3%. [ Conclusion] The results provided theoretical basis for the application of sea brine in the aspects of plant diseases and vests control
基金the National Natural Sciences Foundation of China(grants40173025,49928201)Trans-century Training Program Foundation for the Talents by the Ministry of Education the Visiting Scholar Foundation of Labs in Universities.
文摘He-Ar isotopic compositions of fluid inclusions trapped in pyrites from some representative PGE-polymetallic deposits in Lower Cambrian black rock series in South China were analyzed by using an inert gas isotopic mass spectrometer. The results show that the ore-forming fluids possess a low 3He/4He ratio, varying from 0.43×10-8 to 26.39×10-8, with corresponding R/Ra value of 0.003-0.189. The 40Ar/36Ar ratios are 258-287, close to those of air saturated water (ASW). He-Ar isotopic indicator studies show that the ore-forming fluids were mainly derived from the formation water or basinal hot brine and sea water, while the content of mantle-derived fluid or deep-derived magmatic water might be negligible. The PGE-polymetallic mineralization might be related to the evolution of the Caledonian miogeosynclines distributed along the southern margin of the Yangtze Craton. During the Early Cambrian, the formation water or basinal hot brine trapped in Caledonian basins which accumulated giant thick sediments was expelled and migrated laterally along strata because of the pressure generated by overlying sediments. The basinal hot brine ascended along faults, mixed with sea water and finally deposited ore minerals.
基金Supported by the International Cooperation Research Program of the Ministry of Science&Technology of China(No.2010DFA32300)the Pilot Project for International Cooperation"Aquaculture in Hebei and Shandong Provinces"funded by the Province of East-Flanders,Belgiumthe Nature Science Foundation of Tianjin(No.13JCZDJC28700)
文摘We studied the effect of pH (pH 5, 6, 7 and 8) on the hatching percentage, survival and reproduction of Artemia strains in Bohai Bay salt ponds. Strains included parthenogenetic Artemia from Bohai Bay (BHB), Artemiafranciscana from San Francisco Bay, and A. franciscana artificially produced in salt ponds in Vietnam. The latter was included as a potential inoculum for biological management of salt ponds. The hatching percentage of cysts after 24 h and the survival rate of the tested Artemia strains were significantly reduced when exposed to a culture medium at pH 5 for 18 d (P〈0.05). The tolerance of Artemia to 48 h acid exposure varied with developmental stage, increasing in the following order: juvenile, nauplii, pre-adult, with maximum tolerance in adults. All strains of Artemia tested could not reproduce at pH 5. At pH levels from pH 6-8, a higher pH generally resulted in a shorter brood interval and enhanced ovoviviparity. Hence, we suggest that brine acidification has a negative impact on Artemia populations in the Bohai Bay saltworks. Inoculation of Artemia with either local parthenogenetic Artemia or exotic A. franeiscana should be feasible at pH 7-8.
基金supported by the Basic Research Project for the Central Public Welfare Scientific Institutions of China (No.K1405)the National Key Project for Basic Research of China (No.2011CB403007)the National Natural Science Foundation of China (No.41572067)
文摘The Mengyejing potash deposit is located in the southern port of the Simao Basin, Yunnan Province, and is hosted in mid-Cretaceous strata. The chemical compositions of fluid inclusions in halite crystals, collected from the level-610 adit in the deposit, were analysed by laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS). The results show that the brine is of the Na-K-Mg-Ca-Cl type and has K concentrations that are distinctly higher than those of Mg and Ca, unlike normal brines associated with Cretaceous halite. The high K concentrations indicate that the degree of evaporation of the ancient Mengyejing saline lake was very high, reaching the sylvite deposition stage but rarely reaching the carnallite deposition stage. The trajectory of the H and O isotopic compositions of the brines in the halite-hosted fluid inclusions corresponds to intense evaporation, indicating that the net evaporation exceeded the net inflow of brines. These brine compositions in halite-hosted fluid inclusions were likely formed by the dissolution of previously deposited K-bearing minerals by fresh continental and/or seawater, forming a type of modified seawater, with deep hydrothermal fluids potentially supplying additional potassium. The basin likely experienced multiple seawater incursion, dissolution and redeposition events in a high-temperature environment with high evaporation rates.
基金supported by the National Natural Science Foundation of China (Grant U1507202, U1707603)the Innovative Research Groups of National Natural Science Foundation of China (Grant 21521005)the Key R&D Program of Qinghai Province (Grant 2017-GX-144)
文摘The extraction of lithium from salt lake brine in the Chinese Qaidam Basin is challenging due to its high Mg/Li and Na/Li ratios. Herein, we utilized a reaction-coupled separation technology to separate sodium and lithium ions from a high Na/Li ratio brine(Na/Li = 48.7, w/w) and extracted lithium with Li Al-layered double hydroxides(Li Al-LDHs). The Li Al-LDHs act as lithium-ion-selective capturing materials from multication brines. That is, the lithium ions selectively enter the solid phase to form Li Al-LDHs, and the sodium ions are still retained in the liquid phase. This is because the lithium ions can be incorporated into the structural vacancies of LiAl-LDHs, whereas the sodium ions cannot. The effects of reaction conditions on lithium loss and separation efficiency were investigated at both the nucleation and the crystallization stage, e.g., the nucleation rotating speed, the Li/Al molar ratio, the crystallization temperature and time, and co-existing cations. The lithium loss is as low as 3.93% under optimal separation conditions.The sodium ions remained in the solution. Consequently, an excellent Na/Li separation efficiency was achieved by this reaction-coupled separation technology. These findings confirm that LiAl-LDHs play a critical function in selectively capturing lithium ions from brines with a high Na/Li ratio, which is useful for the extraction of lithium ions from the abundant salt lake brine resources in China.
文摘Lithium in nature mainly exists in the forms of solid minerals and ionic liquid.More than 150 lithium minerals exist,which are mainly pegmatite mineral including triphane,lithionite and petalite.Liquid lithium mainly
文摘High-grade dehydration of amphibolite-facies rocks to granulite-facies is a process that can involve partial melting, fluid-aided solid-state dehydration, or varying degrees of both. On the localized meter scale, solid-state dehydration, due to CO:-rich fluids traveling along some fissure or crack and subsequently outwards along the mineral grain boundaries of the surrounding rock, normally is the means by which the breakdown of biotite and amphibole to orthopyroxene and clinopyroxene occur. Various mineral textures and changes in mineral chemistry seen in these rocks are also seen in more regional orthopyroxene-clinopyroxene-bearing rocks which, along with accompanying amphibolite-facies rocks, form traverses of lower crust. This suggests that solid-state dehydration during high-grade metamorphism could occur on a more regional scale. The more prominent of these fluid-induced textures in the granulite- facies portion of the traverse take the form of micro-veins of K-feldspar along quartz grain boundaries and the formation of monazite inclusions in fluorapatite. The fluids believed responsible take the form of concentrated NaCl- and KCl- brines from a basement ultramafic magma heat source traveling upwards along grain boundaries. Additional experimental work involving CaSO4 dissolution in NaCl-brines, coupled with natural observation of oxide and sulfide mineral associations in granulite-facies rocks, have demonstrated the possibility that NaCl-brines, with a CaSO4 component, could impose the oxygen fugacity on these rocks as opposed to the oxygen fugacity being inherent in their protoliths. These results, taken together, lend credence to the idea that regional chemical modification of the lower crust is an evolutionary process controlled by fluids migrating upwards from the lithospheric mantle along grain boundaries into and through the lower crust where they both modify the rock and are modified by it.Their presence allows for rapid mass and heat transport and subsequent mineral genesis and mineral re- equilibration in the rocks through which they pass.
文摘With the technological development of exploitation and separation,the primary source of lithium has gradually changed from ore to brine,which has become the main raw material,accounting for more than 80% of the total production.Resources of lithium-bearing brine are abundant in China.This paper has summarized the spatial and temporal distribution,characteristics,and formation mechanism of the lithium-rich brine in China,aiming to provide a comprehensive set of guidelines for future lithium exploitation from brines.Lithium brines usually exist in modem saline lakes and deep underground sedimentary rocks as subsurface brines.The metallogenic epoch of China's lithium-rich brine spans from the Triassic to the Quaternary,and these brines exhibit obvious regional distribution characteristics.Modem lithium-rich saline lakes are predominately located in the Qinghai-Tibet Plateau.In comparison,the subsurface lithium-rich brines are mainly distributed in the sedimentary basins of Sichuan,Hubei,Jiangxi,and the western part of the Qaidam Basin.Lithium-rich saline lakes are chloride-enriched,sulfate-enriched,and carbonateenriched,while the deep lithium-rich brines are mainly chloride-enriched.On the whole,the value of Mg/Li in deep brine is generally lower than that of brine in saline lakes.The genesis of lithium-rich brines in China is not uniform,generally there are two processes,which are respectively suitable for salt lakes and deep brine.
基金supported by the National Natural Science Foundation of China(grant numbers 21878133,21908082 and 21722604)the Natural Science Foundation of Jiangsu Province(BK20190854)+2 种基金the China Postdoctoral Science Foundation(2020M671364)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX191622)the Science&Technology Foundation of Zhenjiang(GY2020027)。
文摘Accelerating the development of lithium resources has attracted a great deal of attention with the explosive growth of new energy vehicles.As a new technology,electrochemical lithium ion pumping(ELIP)is featured by environment-friendly,low energy consumption and high efficiency.This review summarizes the research progress in ELIP,and focuses on the evaluation methods,electrode materials and electrochemical systems of ELIP.It can be concluded that ELIP is expected to achieve an industrial application and has a promising prospect.In addition,challenges and perspective of electrochemical lithium extraction are also highlighted.
基金financially supported by the National Natural Science Foundation of China(Nos.52034002,U1802253)the National Key Research and Development Program of China(No.2019YFC1908401)the Fundamental Research Funds for the Central Universities,China(No.FRF-TT-19-001)。
文摘Lithium is considered to be the most important energy metal of the 21st century.Because of the development trend of global electrification,the consumption of lithium has increased significantly over the last decade,and it is foreseeable that its demand will continue to increase for a long time.Limited by the total amount of lithium on the market,lithium extraction from natural resources is still the first choice for the rapid development of emerging industries.This paper reviews the recent technological developments in the extraction of lithium from natural resources.Existing methods are summarized by the main resources,such as spodumene,lepidolite,and brine.The advantages and disadvantages of each method are compared.Finally,reasonable suggestions are proposed for the development of lithium extraction from natural resources based on the understanding of existing methods.This review provides a reference for the research,development,optimization,and industrial application of future processes.