期刊文献+
共找到5,906篇文章
< 1 2 250 >
每页显示 20 50 100
Stress-drop effect on brittleness evaluation of rock materials 被引量:2
1
作者 SHI Gui-cai CHEN Guan +3 位作者 PAN Yu-tao YANG Xiao-li LIU Yong DAI Guo-zhong 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第7期1807-1819,共13页
Uniaxial or triaxial compression test of cylindrical rock specimens using rock mechanics testing machine is a basic experimental method to study the strength and deformation characteristics of rock and the development... Uniaxial or triaxial compression test of cylindrical rock specimens using rock mechanics testing machine is a basic experimental method to study the strength and deformation characteristics of rock and the development process of rock fracture. Extensive literature review has been conducted on this issue;meanwhile, experimental and numerical studies have been conducted on the stress-drop effect on the brittleness of rock materials. A plastic flow factor of λ is proposed to describe the stress-drop effect. Evaluation methods of the factor λ corresponding to the four yield criteria of rock mass are proposed. Those four yield criteria are Tresca criterion, von-Mises criterion, Mohr-Coulomb criterion and Drucker-Prager criterion. For simplicity purposes, an engineering approximation approach has been proposed to evaluate the stress-drop with a non-zero strain increment. Numerical simulation results validated the effectiveness of the plastic flow factors λ as well as the engineering approximation approach. Based on the results in this study, finite element code can be programmed for brittle materials with stress-drop, which has the potential to be readily incorporated in finite element codes. 展开更多
关键词 rock material stress-drop effect plastic flow factor strength criteria
下载PDF
Quantitative characterization of the brittleness of deep shales by integrating mineral content,elastic parameters,in situ stress conditions and logging analysis
2
作者 Tongtong Luo Jianguo Wang +3 位作者 Li Chen Chaoya Sun Qian Liu Fenggang Wang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期167-179,共13页
Deep shale reservoirs(3500–4500 m)exhibit significantly different stress states than moderately deep shale reservoirs(2000–3500 m).As a result,the brittleness response mechanisms of deep shales are also different.It... Deep shale reservoirs(3500–4500 m)exhibit significantly different stress states than moderately deep shale reservoirs(2000–3500 m).As a result,the brittleness response mechanisms of deep shales are also different.It is urgent to investigate methods to evaluate the brittleness of deep shales to meet the increasingly urgent needs of deep shale gas development.In this paper,the quotient of Young’s modulus divided by Poisson’s ratio based on triaxial compression tests under in situ stress conditions is taken as SSBV(Static Standard Brittleness Value).A new and pragmatic technique is developed to determine the static brittleness index that considers elastic parameters,the mineral content,and the in situ stress conditions(BIEMS).The coefficient of determination between BIEMS and SSBV reaches 0.555 for experimental data and 0.805 for field data.This coefficient is higher than that of other brittleness indices when compared to SSBV.BIEMS can offer detailed insights into shale brittleness under various conditions,including different mineral compositions,depths,and stress states.This technique can provide a solid data-based foundation for the selection of‘sweet spots’for single-well engineering and the comparison of the brittleness of shale gas production layers in different areas. 展开更多
关键词 Deep shale reservoirs brittleNESS Pressure effect Evaluation method Longmaxi formation Sichuan Basin
下载PDF
Particle Discontinuous Deformation Analysis of Static and Dynamic Crack Propagation in Brittle Material
3
作者 Zediao Chen Feng Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第5期2215-2236,共22页
Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough ... Crack propagation in brittle material is not only crucial for structural safety evaluation,but also has a wideranging impact on material design,damage assessment,resource extraction,and scientific research.A thorough investigation into the behavior of crack propagation contributes to a better understanding and control of the properties of brittle materials,thereby enhancing the reliability and safety of both materials and structures.As an implicit discrete elementmethod,the Discontinuous Deformation Analysis(DDA)has gained significant attention for its developments and applications in recent years.Among these developments,the particle DDA equipped with the bonded particle model is a powerful tool for predicting the whole process of material from continuity to failure.The primary objective of this research is to develop and utilize the particle DDAtomodel and understand the complex behavior of cracks in brittle materials under both static and dynamic loadings.The particle DDA is applied to several classical crack propagation problems,including the crack branching,compact tensile test,Kalthoff impact experiment,and tensile test of a rectangular plate with a hole.The evolutions of cracks under various stress or geometrical conditions are carefully investigated.The simulated results are compared with the experiments and other numerical results.It is found that the crack propagation patterns,including crack branching and the formation of secondary cracks,can be well reproduced.The results show that the particle DDA is a qualified method for crack propagation problems,providing valuable insights into the fracture mechanism of brittle materials. 展开更多
关键词 Discontinuous deformation analysis particle DDA crack propagation crack branching brittle materials
下载PDF
A statistical damage-based constitutive model for shearing of rock joints in brittle drop mode
4
作者 Xinrong Liu Peiyao Li +5 位作者 Xueyan Guo Xinyang Luo Xiaohan Zhou Luli Miao Fuchuan Zhou Hao Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第8期1041-1058,共18页
Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encum... Some rock joints exhibit significant brittleness,characterized by a sharp decrease in shear stress upon reaching the peak strength.However,existing models often fail to accurately represent this behavior and are encumbered by numerous parameters lacking clear mechanical significance.This study presents a new statistical damage constitutive model rooted in both damage mechanics and statistics,containing only three model parameters.The proposed model encompasses all stages of joint shearing,including the compaction stage,linear stage,plastic yielding stage,drop stage,strain softening stage,and residual strength stage.To derive the analytical expression of the constitutive model,three boundary conditions are introduced.Experimental data from both natural and artificial rock joints is utilized to validate the model,resulting in average absolute relative errors ranging from 3%to 8%.Moreover,a comparative analysis with established models illustrates that the proposed model captures stress drop and post-peak strain softening more effectively,with model parameters possessing clearer mechanical interpretations.Furthermore,parameter analysis is conducted to investigate the impacts of model parameters on the curves and unveil the relationship between these parameters and the mechanical properties of rock joints.Importantly,the proposed model is straightforward in form,and all model parameters can be obtained from direct shear tests,thus facilitating the utilization in numerical simulations. 展开更多
关键词 Rock joints brittle rock Direct shear test Damage-based constitutive model Parameters analysis
下载PDF
Fourth-order phase-field modeling for brittle fracture in piezoelectric materials
5
作者 Yu TAN Fan PENG +2 位作者 Chang LIU Daiming PENG Xiangyu LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第5期837-856,共20页
Failure analyses of piezoelectric structures and devices are of engineering and scientific significance.In this paper,a fourth-order phase-field fracture model for piezoelectric solids is developed based on the Hamilt... Failure analyses of piezoelectric structures and devices are of engineering and scientific significance.In this paper,a fourth-order phase-field fracture model for piezoelectric solids is developed based on the Hamilton principle.Three typical electric boundary conditions are involved in the present model to characterize the fracture behaviors in various physical situations.A staggered algorithm is used to simulate the crack propagation.The polynomial splines over hierarchical T-meshes(PHT-splines)are adopted as the basis function,which owns the C1continuity.Systematic numerical simulations are performed to study the influence of the electric boundary conditions and the applied electric field on the fracture behaviors of piezoelectric materials.The electric boundary conditions may influence crack paths and fracture loads significantly.The present research may be helpful for the reliability evaluation of the piezoelectric structure in the future applications. 展开更多
关键词 isogeometric analysis(IGA) brittle fracture fourth-order phase-field model piezoelectric solid
下载PDF
Analysis of the Application Effect of Structured Healthcare Education in Brittle Diabetic Patients
6
作者 Na Deng 《Journal of Contemporary Educational Research》 2024年第6期44-49,共6页
Objective:To explore the application effect of structured healthcare education in patients with brittle diabetes mellitus.Methods:188 brittle diabetic patients admitted to our hospital from May 2021 to December 2023 w... Objective:To explore the application effect of structured healthcare education in patients with brittle diabetes mellitus.Methods:188 brittle diabetic patients admitted to our hospital from May 2021 to December 2023 were selected as the study subjects,and were divided into the control group(n=94)and the observation group(n=94)according to the random number table method.The control group used conventional nursing intervention and the observation group used structured healthcare education.The general information,glycemic indexes,self-efficacy,compliance,and nursing satisfaction of patients in the two groups were observed.Results:There was no statistical significance in the basic information of the two groups of patients(P>0.05);after the intervention,the fasting plasma glucose,2-hour postprandial blood glucose,and HbA1c of the patients in the observation group were lower than those of the control group(P<0.001);after the intervention,the self-efficacy scores of the patients in the two groups increased,and the scores of the observation group were significantly higher than those of the control group(P<0.001);the total adherence rate of the patients in the observation group(90/95.75%)was significantly higher than that of the control group(80/90.10%)(χ^(2)=6.144,P<0.05);and the total satisfaction rate of patients in the observation group(92/97.87%)was significantly higher than that of the control group(78/82.98%)(χ^(2)=12.042,P<0.05).Conclusion:In patients with brittle diabetes mellitus,structured healthcare education can effectively control patients’blood glucose levels,improve patients’self-efficacy and adherence,and enhance patient satisfaction. 展开更多
关键词 Structured healthcare education brittle diabetes mellitus Application effect
下载PDF
Anomalous yield and intermediate temperature brittleness behaviors of directionally solidified nickel-based superalloy 被引量:9
7
作者 盛立远 杨芳 +1 位作者 郭建亭 奚廷斐 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期673-681,共9页
A nickel-based superalloy with good corrosion resistance was fabricated by directional solidification, and its microstructure and tensile properties at elevated temperatures were investigated. Microstructure observati... A nickel-based superalloy with good corrosion resistance was fabricated by directional solidification, and its microstructure and tensile properties at elevated temperatures were investigated. Microstructure observations reveal that the γ' precipitates are arrayed in the y matrix regularly with some MC, Ni5Hf and M3B2 particles distributed along the grain boundary. The tensile tests exhibit that the tensile properties depend on temperature significantly and demonstrate obvious anomalous yield and intermediate-temperature brittleness (ITB) behavior. Below 650℃, the yield strength decreases slightly but the ultimate tensile strength almost has no change. When the temperature is between 650 ℃ and 750 ℃, the yield and ultimate tensile strengths rise rapidly, and after then they both decrease gradually with temperature increasing further. The elongation has its minimum value at about 700 ℃. The TEM examination exhibits that sharing of the γ' by dislocation is almost the main deformation mechanism at low temperatures, but the γ' by-pass dominates the deformation at high temperatures. The transition temperature from shearing to by-pass should be around 800 ℃. The anomalous yield and intermediate-temperature brittleness behaviors should be attributed to the high content of γ'. In addition, the carbides and eutectic structure also contribute some to the ITB behaviors of the alloy. 展开更多
关键词 nickel-based superalloy directional solidification anomalous yield intermediate-temperature brittleness microstructure
下载PDF
Thermal-hydro-mechanical coupling stress intensity factor of brittle rock 被引量:3
8
作者 李鹏 饶秋华 +1 位作者 李卓 敬静 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第2期499-508,共10页
A new calculation formula of THM coupling stress intensity factor was derived by the boundary collocation method, in which an additional constant stress function was successfully introduced for the cracked specimen wi... A new calculation formula of THM coupling stress intensity factor was derived by the boundary collocation method, in which an additional constant stress function was successfully introduced for the cracked specimen with hydraulic pressure applied on its crack surface. Based on the newly derived formula, THM coupling fracture modes (including tensile, shear and mixed fracture mode) can be predicted by a new fracture criterion of stress intensity factor ratio, where the maximum axial load was measured by self-designed THM coupling fracture test. SEM analyses of THM coupling fractured surface indicate that the higher the temperature and hydraulic pressure are and the lower the confining pressure is, the more easily the intergranular (tension) fracture occurs. The transgranular (shear) fracture occurs in the opposite case while the mixed-mode fracture occurs in the middle case. The tested THM coupling fracture mechanisms are in good agreement with the predicted THM coupling fracture modes, which can verify correction of the newly-derived THM coupling stress intensity factor formula. 展开更多
关键词 stress intensity factor thermal-hydro-mechanical coupling boundary collocation method fracture mechanism brittle rock
下载PDF
Evaluation of Urban Village Renovation System in Xi’an City of China Based on Brittleness Analysis
9
作者 冯璐 张佩 《Journal of Landscape Research》 2012年第4期40-42,46,共4页
Renovation system of urban villages in Xi'an City was evaluated. Influence factors of urban village renovation were analyzed on the basis of brittleness theory, and an evaluation index system established through m... Renovation system of urban villages in Xi'an City was evaluated. Influence factors of urban village renovation were analyzed on the basis of brittleness theory, and an evaluation index system established through multi-level inconsistency decomposing. By incorporating the catastrophe theory with fuzzy mathematical theory, the mathematic model was created, and catastrophe membership function was obtained as well as evaluation results. Policies for the renovation of urban villages and new direction of the renovation were interpreted. The application case proved that catastrophe progression method was objective and effective and it could provide new concepts for the evaluation and adjustment of urban village renovation. Moreover, application of brittleness theory in the research on urban village renovation is of great instruction and reference value for the present urban construction. 展开更多
关键词 Urban VILLAGE RENOVATION CATASTROPHE Progression Method brittleNESS EVALUATION Xi’an City
下载PDF
APPLICATION OF DIAMOND TWIST DRILL FOR DRILLING HARD-BRITTLE MATERIALS
10
作者 左敦稳 吴健 +1 位作者 王珉 刘奎 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1998年第2期65-71,共7页
A new conception, which combines the advantages of both twist drill and diamond grit, is proposed to develop a new tool for drilling hard brittle materials. The manufacturing process of the drill is introduced, and d... A new conception, which combines the advantages of both twist drill and diamond grit, is proposed to develop a new tool for drilling hard brittle materials. The manufacturing process of the drill is introduced, and drilling experiments are carried out by using of the drill developed. As a result, not only it can drill holes with a high efficiency, but also a good quality of hole inlet and outlet can be obtained for such materials as glasses, marble, granite, Al 2O 3, etc. The prospect in practical application of the technique developed is also discussed. 展开更多
关键词 hard brittle materials hole drilling twist drill diamond grain electro deposition
下载PDF
Brittleness index and seismic rock physics model for anisotropic tight-oil sandstone reservoirs 被引量:3
11
作者 黄欣芮 黄建平 +3 位作者 李振春 杨勤勇 孙启星 崔伟 《Applied Geophysics》 SCIE CSCD 2015年第1期11-22,120,共13页
Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock ph... Brittleness analysis becomes important when looking for sweet spots in tightoil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs. 展开更多
关键词 brittleness index tight-oil sandstone reservoirs seismic rock physics model brittleness sensitivity anisotropy
下载PDF
Burial depth interval of the shale brittle–ductile transition zone and its implications in shale gas exploration and production 被引量:11
12
作者 Yu-Song Yuan Zhi-Jun Jin +3 位作者 Yan Zhou Jun-Xin Liu Shuang-Jian Li Quan-You Liu 《Petroleum Science》 SCIE CAS CSCD 2017年第4期637-647,共11页
Brittleness and ductility of shale are closely related to shale gas exploration and production. How to predict brittleness and ductility of shale is one of the key issues in the study of shale gas preservation and hyd... Brittleness and ductility of shale are closely related to shale gas exploration and production. How to predict brittleness and ductility of shale is one of the key issues in the study of shale gas preservation and hydraulic fracturing treatments. The magnitude of shale brittleness was often determined by brittle mineral content(for example, quartz and feldspars) in shale gas exploration.However, the shale brittleness is also controlled by burial depth. Shale brittle/ductile properties such as brittle, semibrittle and ductile can mutually transform with burial depth variation. We established a work flow of determining the burial depth interval of brittle–ductile transition zone for a given shale. Two boundaries were employed to divide the burial depth interval of shale brittle/ductile properties. One is the bottom boundary of the brittle zone(BZ), and the other is the top boundary of the ductile zone(DZ). The brittle–ductile transition zone(BDTZ) is between them.The bottom boundary of BZ was determined by the overconsolidation ratio(OCR) threshold value combined with pre-consolidation stress which the shale experienced over geological time. The top boundary of DZ was determined based on the critical confining pressure of brittle–ductile transition. The OCR threshold value and the critical confining pressure were obtained from uniaxial strain andtriaxial compression tests. The BZ, DZ and BDTZ of the Lower Silurian Longmaxi shale in some representative shale gas exploration wells in eastern Sichuan and western Hubei areas were determined according to the above work flow. The results show that the BZ varies with the maximum burial depth and the DZ varies with the density of the overlying rocks except for the critical confining pressure.Moreover, the BDTZ determined by the above work flow is probably the best burial depth interval for marine shale gas exploration and production in Southern China. Shale located in the BDTZ is semi-brittle and is not prone to be severely naturally fractured but likely to respond well to hydraulic fracturing. The depth interval of BDTZ determined by our work flow could be a valuable parameter of shale gas estimation in geology and engineering. 展开更多
关键词 SHALE brittleNESS Fracture Over-consolidation ratio(OCR) Confining pressure
下载PDF
Construction of a novel brittleness index equation and analysis of anisotropic brittleness characteristics for unconventional shale formations 被引量:7
13
作者 Ke-Ran Qian Tao Liu +3 位作者 Jun-Zhou Liu Xi-Wu Liu Zhi-Liang He Da-Jian Jiang 《Petroleum Science》 SCIE CAS CSCD 2020年第1期70-85,共16页
The brittleness prediction of shale formations is of interest to researchers nowadays.Conventional methods of brittleness prediction are usually based on isotropic models while shale is anisotropic.In order to obtain ... The brittleness prediction of shale formations is of interest to researchers nowadays.Conventional methods of brittleness prediction are usually based on isotropic models while shale is anisotropic.In order to obtain a better prediction of shale brittleness,our study firstly proposed a novel brittleness index equation based on the Voigt–Reuss–Hill average,which combines two classical isotropic methods.The proposed method introduces upper and lower brittleness bounds,which take the uncertainty of brittleness prediction into consideration.In addition,this method can give us acceptable predictions by using limited input values.Secondly,an anisotropic rock physics model was constructed.Two parameters were introduced into our model,which can be used to simulate the lamination of clay minerals and the dip angle of formation.In addition,rock physics templates have been built to analyze the sensitivity of brittleness parameters.Finally,the effects of kerogen,pore structure,clay lamination and shale formation dip have been investigated in terms of anisotropy.The prediction shows that the vertical/horizontal Young’s modulus is always below one while the vertical/horizontal Poisson’s ratio(PR)can be either greater or less than 1.Our study finds different degrees of shale lamination may be the explanation for the random distribution of Vani(the ratio of vertical PR to horizontal PR). 展开更多
关键词 brittleNESS SHALE Rock Physics ANISOTROPY Voigt–Reuss–Hill AVERAGE
下载PDF
Discrete element modeling on the crack evolution behavior of brittle sandstone containing three fissures under uniaxial compression 被引量:12
14
作者 Sheng-Qi Yang Yan-Hua Huang +2 位作者 P.G.Ranjith Yu-Yong Jiao Jian Ji 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第6期871-889,共19页
Based on experimental restilts of brittle, intact sandstone under uniaxial compression, the micro-parameters were firstly confirmed by adopting particle flow code (PFC2D). Then, the validation of the simulated model... Based on experimental restilts of brittle, intact sandstone under uniaxial compression, the micro-parameters were firstly confirmed by adopting particle flow code (PFC2D). Then, the validation of the simulated models were cross checked with the experimental results of brittle sandstone containing three parallel fissures under uniaxial compression. The simulated results agreed very well with the experimental results, including the peak strength, peak axial strain, and ultimate failure mode. Using the same micro- parameters, the numerical models containing a new geometry of three fissures are constructed to investigate the fissure angle on the fracture mechanical behavior of brittle sandstone under uniaxial compression. The strength and deformation parameters of brittle sandstone containing new three fissures are dependent to the fissure angle. With the increase of the fis- sure angle, the elastic modulus, the crack damage threshold, and the peak strength of brittle sandstone containing three fissures firstly increase and secondly decrease. But the peak axial strain is nonlinearly related to the fissure angle. In the entire process of deformation, the crack initiation and propagation behavior of brittle sandstone containing three fissures under uniaxial compression are investigated with respect to the fissure angle. Six different crack coalescence modes are identified for brittle sandstone containing three fissures under uniaxial compression. The influence of the fissure angle on the length of crack propagation and crack coalescence stress is evaluated. These investigated conclusions are very important for ensuring the stability and safety of rock engineering with intermittent structures. 展开更多
关键词 brittle sandstone ·PFC2D Three fissures ·Crack initiation Crack propagation Crack coalescence
下载PDF
Pre-stack basis pursuit seismic inversion for brittleness of shale 被引量:8
15
作者 Xing-Yao Yin Xiao-Jing Liu Zhao-Yun Zong 《Petroleum Science》 SCIE CAS CSCD 2015年第4期618-627,共10页
Brittleness of rock plays a significant role in exploration and development of shale gas reservoirs. Young's modulus and Poisson's ratio are the key param- eters for evaluating the rock brittleness in shale gas expl... Brittleness of rock plays a significant role in exploration and development of shale gas reservoirs. Young's modulus and Poisson's ratio are the key param- eters for evaluating the rock brittleness in shale gas exploration because their combination relationship can quantitatively characterize the rock brittleness. The high- value anomaly of Young's modulus and the low-value anomaly of Poisson's ratio represent high brittleness of shale. The technique of pre-stack amplitude variation with angle inversion allows geoscientists to estimate Young's modulus and Poisson's ratio from seismic data. A model constrained basis pursuit inversion method is proposed for stably estimating Young's modulus and Poisson's ratio. Test results of synthetic gather data show that Young's modulus and Poisson's ratio can be estimated reasonably. With the novel method, the inverted Young's modulus and Poisson's ratio of real field data focus the layer boundaries better, which is helpful for us to evaluate the brittleness of shale gas reservoirs. The results of brittleness evaluation show a good agreement with the results of well interpretation. 展开更多
关键词 brittleNESS Shale gas Amplitude variationwith angle Basis pursuit Bayesian framework
下载PDF
Rotary ultrasonic-assisted milling of brittle materials 被引量:6
16
作者 KUO Kei-lin TSAO Chung-chen 《中国有色金属学会会刊:英文版》 CSCD 2012年第S3期793-800,共8页
In order to improve the machining efficiency of ultrasonic milling,the easiest and most effective approach was started with the improvement of tool design.The main objective of this research was to utilize rotary ultr... In order to improve the machining efficiency of ultrasonic milling,the easiest and most effective approach was started with the improvement of tool design.The main objective of this research was to utilize rotary ultrasonic machining (RUM's) effectiveness in removing brittle materials to extend the applications of this independent,innovative manufacturing method (self-driving rotary ultrasonic machining),and to experimentally investigate its milling application on brittle materials.The designed tool was used in the conjunction with previously established RUM machine tools,and glass was selected as workpiece for experiments.The interrelationship between feed rate and depth of cut was discussed.By measuring the surface roughness of workpiece,the overall efficacy of utilizing RUM for milling was evaluated and presented.Ultrasonic assisted milling results in the reduction of milling resistance,which leads to a greater process rate. 展开更多
关键词 ROTARY ULTRASONIC ULTRASONIC ASSISTED MILLING brittle material
下载PDF
A NEW DAMAGE MODEL FOR MICROCRACK-WEAKENED BRITTLE SOLIDS 被引量:6
17
作者 冯西桥 余寿文 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1993年第3期251-260,共10页
In the present paper, a micromechanically based damage model for microcrack-weakened solids is developed. The concept of the domain of microcrack growth (DMG) is defined and used to describe the damage state and the a... In the present paper, a micromechanically based damage model for microcrack-weakened solids is developed. The concept of the domain of microcrack growth (DMG) is defined and used to describe the damage state and the anisotropic properties of brittle materials. After choosing an appropriate fracture criterion of microcrack, we obtain the analytical expression of DMG under a monotonically in- creasing proportional plane stress. Under a complex loading path, the evolution equation of DMG and the overall effective compliance tensor of damaged materials are given. 展开更多
关键词 damage model brittle material constitutive relation
下载PDF
DUCTILEBRITTLETRANSITION OF POLYCRYSTALLINE Ni_3Al WITH VARYING GRAIN SIZE 被引量:7
18
作者 G. W. Han, D. Feng and C. S. Lee  Central Iron & Steel Research Institute, Beijing 100081, China  Dept. Physical & Mater. Sci., City University of Hong Kong Hong Kong, China 《中国有色金属学会会刊:英文版》 CSCD 1999年第S1期125-129,共5页
It is known that in B (un)doped Ni 3Al polycrystals, the dependence of yield strength on grain size follows the Hall Petch relationship: σ y= σ 0+ K y d -1/2 , and the slope K y can be reduced by B doping owing to t... It is known that in B (un)doped Ni 3Al polycrystals, the dependence of yield strength on grain size follows the Hall Petch relationship: σ y= σ 0+ K y d -1/2 , and the slope K y can be reduced by B doping owing to the lowering of grain boundary resistance to slip transmission. If the intergranular cracking in polycrystalline Ni 3Al occurs from the microcavity along the grain boundaries, the effective external tensile stress for the propagation of the crack like microcavity along the grain boundaries can be deduced as: σ f= σ i+ K u d -1/2 , where K u reflects the effects of such factors as environment, strain rate, boron doping and the orientation of the grain boundary on the trend of intergranular cracking. For loaded polycrystalline Ni 3Al, it should be competitive between the intergranular cracking and slip transmission across the grain boundary. Therefore, comparing the varieties of both σ y and σ f with grain size, the dependence of ductile brittle transition on grain size, and the effects of the above factors on ductile brittle transition can be expected. The model also predicts that there exists a critical grain size for the ductile brittle transition of polycrystalline Ni 3Al alloys, and B doping can increase the critical grain size due to the reduction of the slope K y and the increase of K u. The reported experimental results verified the above model. 展开更多
关键词 NI 3Al GRAIN size DUCTILE brittle transition HALL Petch relationship
下载PDF
EMBRITTLEMENT OF Fe-Cr-Al ALLOYS AND EFFECT OF Y ADDITION 被引量:4
19
作者 LI Bei WU Shuangxia LI Dianchen Baotou Research Institute of Rare Earth Ministry of Metallurgical Industry,Baotou,ChinaMA Ruzhang University Science and Technology Beijing,Beijing,China Baotou Research Institute of Rare Earth,Ministry of Metallurgical Industry,Baotou 014010,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1993年第2期129-135,共7页
A high temperature embrittlement occures in Fe-15Cr-4AI and Fe-20Cr-4Al alloys treated over 1000 C.It is caused mainly by 475℃ brittleness during cooling.When a secondary treatment at 500℃ was conducted,the 475℃ br... A high temperature embrittlement occures in Fe-15Cr-4AI and Fe-20Cr-4Al alloys treated over 1000 C.It is caused mainly by 475℃ brittleness during cooling.When a secondary treatment at 500℃ was conducted,the 475℃ brittleness developed very rapidly.After only 15 rain of the treating,little plasticity was remained for all samples pretreuted at the temper- atures over 1000℃ and cooled in water.However,no 475℃ brittleness was generated when pretreating temperature was below 1000℃,Addition of Yttrium can inhibit not only grain growth,but also 475℃ brittleness.For the alloys with 0.2—0.4 wt-%Y,after treating at 800—1300℃,the plasticity did not decrease and the properties of furnace cooled samples were not lower than those of water cooled samples. 展开更多
关键词 Fe-Cr-Al alloy brittleNESS YTTRIUM
下载PDF
Micromechanics of rock damage: Advances in the quasi-brittle field 被引量:5
20
作者 Qizhi Zhu Jianfu Shao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第1期29-40,共12页
Constitutive models play an essential role in numerical modeling and simulation of nonlinear deformation, progressive damage and failure of rock-like materials and structures. Recent advances in the quasi-brittle fiel... Constitutive models play an essential role in numerical modeling and simulation of nonlinear deformation, progressive damage and failure of rock-like materials and structures. Recent advances in the quasi-brittle field show that upscaling methods by homogenization have provided a new efficient way to derive macroscopic formulations of rocks from their microstructure information and local properties and then to model nonlinear mechanical behaviors identified at laboratory. This paper aims first at relating the mechanical phenomena on sample scale to their respective mechanisms on microscale. Main focus is put on unilateral effects due to crack’s opening/closure transition, material anisotropy induced by crack growth in some preferred directions and multiphysical coupling at microcracks. After a brief introduction to the linear homogenization method and its application to crack problems, we present some recent advances achieved in the combined homogenization/thermodynamics framework, including anisotropic unilateral damage-friction coupling, theoretical failure prediction in conjunction with deformation analyses, poromechanical coupling, analytical solutions and numerical implementation with application to typical brittle rocks. 展开更多
关键词 MICROMECHANICS Damage-friction coupling Unilateral effects Induced anisotropy Failure criterion brittle rocks
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部