期刊文献+
共找到3,157篇文章
< 1 2 158 >
每页显示 20 50 100
Temperature prediction model in multiphase flow considering phase transition in the drilling operations
1
作者 Yang Zhang Yong-An Li +2 位作者 Xiang-Wei Kong Hao Liu Teng-Fei Sun 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1969-1979,共11页
The study considers gas compression properties,gas slippage,back pressure(BP),phase transition(PT),well depth,and differences in gas-liquid physical properties.A new temperature model for multiphase flow is proposed b... The study considers gas compression properties,gas slippage,back pressure(BP),phase transition(PT),well depth,and differences in gas-liquid physical properties.A new temperature model for multiphase flow is proposed by considering phase transition in the drilling process.The mathematical model of multiphase flow is solved using the finite difference method with annulus mesh division for grid nodes,and a module for multiphase flow calculation and analysis is developed.Numerical results indicate that the temperature varies along the annulus with the variation of gas influx at the bottom of the well.During the process of controlled pressure drilling,as gas slips along the annulus to the wellhead,its volume continuously expands,leading to an increase in the gas content within the annulus,and consequently,an increase in the pressure drop caused by gas slippage.The temperature increases with the increase in BP and decreases in gas influx rate and wellbore diameter.During gas influx,the thermal conductivity coefficient for the gas-drilling mud two phases is significantly weakened,resulting in a considerable change in temperature along the annulus.In the context of MPD,the method of slightly changing the temperature along the annulus by controlling the back pressure is feasible. 展开更多
关键词 Managed pressure drilling Phase transition temperature Gas-drilling mud two phase
下载PDF
Experiments of Brittle-Plastic Transition and Instability Modes of Juyongguan Granite at Different Temperatures and Pressures 被引量:3
2
作者 Zhou Yongsheng, Jiang Haikun and He ChangrongInstitute of Geology, Open Tectonophysics Laboratory, CSB, Beijing 100029, China 《Earthquake Research in China》 2003年第2期169-182,共14页
Three groups of experiments on brittle-plastic transition and instability modes of granite were performed in a triaxial vessel with solid pressure medium at high temperature and high pressure. The results of experimen... Three groups of experiments on brittle-plastic transition and instability modes of granite were performed in a triaxial vessel with solid pressure medium at high temperature and high pressure. The results of experiments show that brittle faulting is the major failure mode at temperature <300℃, but crystal-plastic deformation is dominate at temperature >800℃, and there is a transition with increasing temperature from semi-brittle faulting to cataclastic flow and semi-brittle flow at temperatures of 300~800℃. So, temperature is the most influential factor in brittle-plastic transition of granite and confining pressure is the second factor. The results also show that progressive failure of granite occurs at lower pressure or high temperature where there is crystal plasticity, and sudden instability occurs at room temperature and high pressure (>300MPa) or high temperature and great pressure(550℃600MPa ~650℃700MPa), and a broad regime of quasi-sudden instability exists between the T-P condition of progressive failure and sudden instability. So, instability modes of granite depend simultaneously on the pressure and temperature. 展开更多
关键词 Deformation and failure Instability modes brittle-plastic transition High temperature and great pressure GRANITE
下载PDF
A ten-fold coordinated high-pressure structure in hafnium dihydrogen with increasing superconducting transition temperature induced by enhancive pressure
3
作者 王妍琪 张传钊 +5 位作者 张金权 李松 巨濛 孙伟国 豆喜龙 金园园 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第9期455-462,共8页
High pressure is an effective method to induce structural and electronic changes,creating novel high-pressure structures with excellent physical and chemical properties.Herein,we investigate the structural phase trans... High pressure is an effective method to induce structural and electronic changes,creating novel high-pressure structures with excellent physical and chemical properties.Herein,we investigate the structural phase transition of hafnium dihydrogen(HfH2)in a pressure range of 0 GPa-500 GPa through the first-principles calculations and the crystal structure analysis by particle swarm optimization(CALYPSO)code.The high-pressure phase transition sequence of HfH2is I4/mmm→Cmma→P-3m1 and the two phase transition pressure points are 220.21 GPa and 359.18 GPa,respectively.A newly trigonal P-3m1 structure with 10-fold coordination first appears as an energy superior structure under high pressure.These three structures are all metallic with the internal ionic bonding of Hf and H atoms.Moreover,the superconducting transition temperature(Tc)values of Cmma at 300 GPa and P-3m1 at 500 GPa are 3.439 K and 19.737 K,respectively.Interestingly,the superconducting transition temperature of the P-3m1 structure presents an upward trend with the pressure rising,which can be attributed to the increase of electron-phonon coupling caused by the enhanced Hf-d electronic density of states at Fermi level under high pressure. 展开更多
关键词 transition metal dihydrogen first principles phase transition superconducting transition temperature
下载PDF
Phase-Transitions at High, Very High, and Very Low Temperatures upon Nano-Indentations: Onset Forces and Transition Energies
4
作者 Gerd Kaupp 《Advances in Materials Physics and Chemistry》 2023年第6期101-120,共20页
This paper describes the phase-transition energies from published loading curves on the basis of the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> law that does not violate the energy la... This paper describes the phase-transition energies from published loading curves on the basis of the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> law that does not violate the energy law by assuming h<sup>2</sup> instead, as still do ISO-ASTM 14,577 standards. This law is valid for all materials and all “one-point indentation” temperatures. It detects initial surface effects and phase-transition kink-unsteadiness. Why is that important? The mechanically induced phase-transitions form polymorph interfaces with increased risk of crash nucleation for example at the pickle forks of airliners. After our published crashing risk, as nucleated within microscopic polymorph-interfaces via pre-cracks, had finally appeared (we presented microscopic images (5000×) from a model system), 550 airliners were all at once grounded for 18 months due to such microscopic pre-cracks at their pickle forks (connection device for wing to body). These pre-cracks at phase-transition interfaces were previously not complained at the (semi)yearlycheckups of all airliners. But materials with higher compliance against phase- transitions must be developed for everybody’s safety, most easily by checking with nanoindentations, using their physically correct analyses. Unfortunately, non-physical analyses, as based on the after all incredible exponent 2 on h for the F<sub>N</sub> versus h loading curve are still enforced by ISO-ASTM standards that cannot detect phase-transitions. These standards propagate that all of the force, as applied to the penetrating cone or pyramid shall be used for the depth formation, but not also in part for the pressure to the indenter environment. However, the remaining part of pressure (that was not consumed for migrations, etc.) is always used for the elastic modulus detection routine. That severely violates the energy-law! Furthermore, the now physically analyzed published loading curves contain the phase-transition onsets and energies information, because these old-fashioned authors innocently (?) published (of course correct) experimental loading curves. These follow as ever the physically deduced F<sub>N</sub> = k-h<sup>3/2</sup> relation that does not violate the energy law. Nevertheless, the old-fashioned authors stubbornly assume h<sup>2</sup>instead of h<sup>3/2</sup> as still do ISO-ASTM 14,577 standards according to an Oliver-Pharr publication of 1992 and textbooks. The present work contributes to understanding the temperature dependence of phase-transitions under mechanical load, not only for aviation and space flights, which is important. The physical calculations use exclusively regressions and pure algebra (no iterations, no fittings, and no simulations) in a series of straightforward steps by correcting for unavoidable initial effects from the axis cuts of the linear branches from the above equation exhibiting sharp kink unsteadiness at the onset of phase transitions. The test loading curves are from Molybdenum and Al 7075 alloy. The valid published loading curves strictly follow the F<sub>N</sub> = k-h<sup>3/2</sup> relation. Full applied work, conversion work, and conversion work per depth unit show reliable overall comparable order of magnitude values at temperature increase by 150°C (Al 7075) and 980°C (Mo) when also considering different physical hardnesses and penetration depths. It turns out how much the normalized endothermic phase-transition energy decreases upon temperature increase. For the only known 1000°C indentation we provide reason that the presented loading curves changes are only to a minor degree caused by the thermal expansion. The results with Al 7075 up to 170°C are successfully compared. Al 7075 alloy is also checked by indentation with liquid nitrogen cooling (77 K). It gives two endothermic and one very prominent exothermic phase transition with particularly high normalized phase-transition energy. This indentation loading curve at liquid nitrogen temperature reveals epochal novelties. The energy requiring endothermic phase transitions (already seen at 20°C and above) at 77 K is shortly after the start of the second polymorph (sharply at 19.53 N loading force) followed by a strongly exothermic phase-transition by producing (that is losing) energy-content. Both processes at 77 K are totally unexpected. The produced energy per depth unit is much higher energy than the one required for the previous endothermic conversions. This exothermic phase-transition profits from the inability to provide further energy for the formation of the third polymorph as endothermic obtained at 70°C and above. That is only possible because the very cold crystal can no longer support endothermic events but supports exothermic ones. Both endothermic and exothermic phase-transitions at 77 K under load are unprecedented and were not expected before. While the energetic support at 77 K for endothermic processes under mechanical load is unusual but still understandable (there are also further means to produce lower temperatures). But strongly exothermicphase-transition under mechanical load for the production of new modification with negative energy content (less than the energy content of the ambient polymorph) at very low temperature is an epochal event here on earth. It leads to new global thinking and promises important new applications. The energy content of strongly exothermic transformed material is less than the thermodynamic standard zero energy-content on earth. And it can only be reached when there is no possibility left to produce an endothermic phase-transition. Such less than zero-energy-content materials should be isolated, using appropriate equipment. Their properties must be investigated by chemists, crystallographers, and physicists for cosmological reasons. It could be that such materials will require cooling despite their low energy content (higher stability!) and not survive at ambient temperatures and pressures on earth, but only because we do not know of such negative-energy-content materials with our arbitrary thermodynamic standard zeros on earth. At first one will have to study how far we can go up with temperature for keeping them stable. Thus, the apparently never before considered unprecedented result opens up new thinking for the search of new polymorphs that can, of course, not be reached by heating. Various further applications including cosmology and space flight explorations are profiting from it. 展开更多
关键词 Aluminum Alloy Aviation Cosmology Epochal News High and Liquid Nitrogen temperature Indentations Negative-Energy-Content Polymorph Molybdenum Phase-transition-Energy
下载PDF
QSPR Study on the Glass Transition Temperature of Polyacrylates 被引量:17
5
作者 刘天宝 彭艳芬 吴新民 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2007年第12期1466-1470,共5页
Structural parameters of 22 polyacrylic compounds were computed at two levels using Hartree-Fock and DFT methods. Based on the experimental data of glass transition temperature (Tg), four-parameter (energy of the l... Structural parameters of 22 polyacrylic compounds were computed at two levels using Hartree-Fock and DFT methods. Based on the experimental data of glass transition temperature (Tg), four-parameter (energy of the lowest unoccupied molecular orbital (ELoMO), the highest positive charge (Qmax^+), dipole moments(μ) and the next highest occupied molecular orbital (ENLOMO)) dependent equations were developed using structural parameters as theoretical descriptors. Especially, Tg dependent equation calculated at the HF/6-31G(d) level is more advantageous than others in view of their correlation and predictive abilities. This dependent equation was validated by variance inflation factors (VIF) and t-test methods. 展开更多
关键词 glass transition temperature QSPR POLYACRYLATE HARTREE-FOCK DFT
下载PDF
Fabrication and characterization of SmO_(0.7)F_(0.2)FeAs bulk with a transition temperature of 56.5 K 被引量:3
6
作者 LIU Zhiyong MA Lin +2 位作者 ZHAO Junjing YAN Binjie SUO Hongli 《Rare Metals》 SCIE EI CAS CSCD 2011年第5期496-500,共5页
The superconductivity of iron-based superconductor SmO 0.7 F 0.2 FeAs was investigated. The SmO 0.7 F 0.2 FeAs sample was prepared by the two-step solid-state reaction method. The onset resistivity transition temperat... The superconductivity of iron-based superconductor SmO 0.7 F 0.2 FeAs was investigated. The SmO 0.7 F 0.2 FeAs sample was prepared by the two-step solid-state reaction method. The onset resistivity transition temperature is as high as 56.5 K. X-ray diffraction (XRD) results show that the lattice parameters a and c are 0.39261 and 0.84751 nm, respectively. Furthermore, the global J c was more than 2.3 × 10 5 A/cm 2 at T = 10 K and H = 9 T, which was calculated by the formula of J c = 20ΔM/[a(1-a/(3b))]. The upper critical fields, H c2 ≈ 256 T (T = 0 K), was determined according to the Werthamer-Helfand-Hohenberg formula, indicating that the SmO 0.7 F 0.2 FeAs was a superconductor with a very promising application. 展开更多
关键词 iron-based superconductor SUPERCONDUCTIVITY solid-state reaction transition temperature
下载PDF
MICROSTRUCTURE AND INFRARED EMISSIVITY AT NORMAL TEMPERATURE IN TRANSITIONAL METAL OXIDES SYSTEM CERAMICS 被引量:3
7
作者 徐庆 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2000年第2期15-20,共6页
The fabrication of Fe2O3-MnO2-Co2O3-CuO system ceramics, and the composite system ceramics of transitional metal oxides-cordierite and transitional metal oxides-kaolinit are presented in this work. The research was ca... The fabrication of Fe2O3-MnO2-Co2O3-CuO system ceramics, and the composite system ceramics of transitional metal oxides-cordierite and transitional metal oxides-kaolinit are presented in this work. The research was carried out with the main attention to the infrared emissivity in the band of 8 similar to 14 mu m at room temperature, the microstructure of the ceramics and the relation between them. High infrared emissivities exceeding 0.9 in the band of 8 similar to 14 mu m at room temperature were gained in the transitional metal oxide ceramics and the composite system ceramics. It is suggested that the formation of inverse spinels and partially inverse spinels, such as Fe3O4, CoFe2O4, CuFe2O4 and CuMn2O4, is beneficial to the enhancement of the infrared emissivity of the transitional metal oxide ceramics. The transitional metal oxides play an important role in determining the infrared emissivity of the composite system ceramics. 展开更多
关键词 transitional metal oxide CORDIERITE KAOLINITE infrared radiation ceramics room temperature
下载PDF
Transition Periods Between Sea Ice Concentration and Sea Surface Air Temperature in the Arctic Revealed by an Abnormal Running Correlation 被引量:2
8
作者 JI Xupeng ZHAO Jinping 《Journal of Ocean University of China》 SCIE CAS CSCD 2019年第3期633-642,共10页
This study used the synthetic running correlation coefficient calculation method to calculate the running correlation coefficients between the daily sea ice concentration(SIC) and sea surface air temperature(SSAT) in ... This study used the synthetic running correlation coefficient calculation method to calculate the running correlation coefficients between the daily sea ice concentration(SIC) and sea surface air temperature(SSAT) in the Beaufort-Chukchi-East Siberian-Laptev Sea(BCEL Sea), Kara Sea and southern Chukchi Sea, with an aim to understand and measure the seasonally occurring changes in the Arctic climate system. The similarities and differences among these three regions were also discussed. There are periods in spring and autumn when the changes in SIC and SSAT are not synchronized, which is a result of the seasonally occurring variation in the climate system. These periods are referred to as transition periods. Spring transition periods can be found in all three regions, and the start and end dates of these periods have advancing trends. The multiyear average duration of the spring transition periods in the BCEL Sea, Kara Sea and southern Chukchi Sea is 74 days, 57 days and 34 days, respectively. In autumn, transition periods exist in only the southern Chukchi Sea, with a multiyear average duration of only 16 days. Moreover, in the Kara Sea, positive correlation events can be found in some years, which are caused by weather time scale processes. 展开更多
关键词 ARCTIC SEA ice CONCENTRATION SEA surface air temperature synthetic running CORRELATION coefficient transition period
下载PDF
Effects of heat treatment conditions and Y-doping on structure and phase transition temperature of VO2 powders 被引量:4
9
作者 Bin WANG Er-hu LI +3 位作者 Jin-jing DU Jun ZHU Lin-bo LI Tian-tian ZHOU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第4期1038-1045,共8页
The VO2 powders were prepared by hydrothermal synthesis.The effects of heat treatment conditions and Y-doping on the structure and phase transition temperature of VO2 were studied.The XRD,SEM and TEM results show that... The VO2 powders were prepared by hydrothermal synthesis.The effects of heat treatment conditions and Y-doping on the structure and phase transition temperature of VO2 were studied.The XRD,SEM and TEM results show that the heat treatment temperature has a significant effect on the crystal transformation of VO2 precursor.Increasing temperature is conducive to the transformation of precursor VO2(B)to ultrafine VO2(M).The Y-doping affects the structure of VO2.Y^3+can occupy the lattice position of V4+to form YVO4 solid solution,which can increase the cell parameters of VO2.Due to the lattice deformation caused by Y-doping,the aggregation of particles is prevented,and the grain is refined obviously.DSC curves show that Y-doping can reduce the phase transition temperature of VO2(M).After adding 9 at.%Y,the phase transition temperature can be reduced from 68.3 to 61.3℃. 展开更多
关键词 VO2 powders hydrothermal synthesis heat treatment Y-doping phase transition temperature
下载PDF
Fine-tuning the ductile-brittle transition temperature of Mg_2Si intermetallic compound via Al doping 被引量:1
10
作者 Ao Li Xin-peng Zhao +4 位作者 Hai-you Huang Yuan Ma Lei Gao Yan-jing Su Ping Qian 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第4期507-515,共9页
Brittleness is a dominant issue that restricts potential applications of Mg_2Si intermetallic compounds(IMC). In this paper, guided by first-principles calculations, we found that Al doping will enhance the ductility ... Brittleness is a dominant issue that restricts potential applications of Mg_2Si intermetallic compounds(IMC). In this paper, guided by first-principles calculations, we found that Al doping will enhance the ductility of Mg_2Si. The underlying mechanism is that Al doping could reduce the electronic exchange effect between Mg and Si atoms, and increase the volume module/shear modulus ratio, both of which are beneficial to the deformation capability of Mg_2Si. Experimental investigations were then carried out to verify the calculation results with Al doping contents ranging from Al-free to 10 wt%. Results showed that the obtained ductile-brittle transition temperature of the Mg_2Si–Al alloy decreased and the corresponding ductility increased. Specifically, the ductile-brittle transition temperature could be reduced by about 100℃. When the content of Al reached 6 wt%, α-Al phase started to precipitate, and the ductile-brittle transition temperature of the alloy no longer decreased. 展开更多
关键词 Mg alloy INTERMETALLIC compound FIRST-PRINCIPLES CALCULATIONS mechanical properties ductile-brittle transition temperature
下载PDF
Room-temperature operating extended short wavelength infrared photodetector based on interband transition of InAsSb/GaSb quantum well 被引量:1
11
作者 Ling Sun Lu Wang +7 位作者 Jin-Lei Lu Jie Liu Jun Fang Li-Li Xie Zhi-Biao Hao Hai-Qiang Jia Wen-Xin Wang Hong Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第4期396-400,共5页
Here in this paper,we report a room-temperature operating infrared photodetector based on the interband transition of an In As Sb/Ga Sb quantum well.The interband transition energy of 5-nm thick In As(0.91)Sb(0.09... Here in this paper,we report a room-temperature operating infrared photodetector based on the interband transition of an In As Sb/Ga Sb quantum well.The interband transition energy of 5-nm thick In As(0.91)Sb(0.09) embedded in the Ga Sb barrier is calculated to be 0.53 e V(2.35μm),which makes the absorption range of In As Sb cover an entire range from short-wavelength infrared to long-wavelength infrared spectrum.The fabricated photodetector exhibits a narrow response range from 2.0μm to 2.3μm with a peak around 2.1μm at 300 K.The peak responsivity is 0.4 A/W under-500-m Vapplied bias voltage,corresponding to a peak quantum efficiency of 23.8%in the case without any anti-reflection coating.At 300 K,the photodetector exhibits a dark current density of 6.05×10^-3A/cm^2 under-400-m V applied bias voltage and 3.25×10^-5A/cm^2 under zero,separately.The peak detectivity is 6.91×10^10cm·Hz^1/2/W under zero bias voltage at 300 K. 展开更多
关键词 InAsSb/GaSb quantum well interband transition PHOTODETECTOR room temperature operating
下载PDF
Correlation between test temperature, applied load and wear transition of Mg97Zn1Y2 alloy 被引量:1
12
作者 J.An Y.X.Tian C.Q.Feng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第2期592-603,共12页
Dry sliding wear tests were performed on Mg97 Zn1 Y2 alloy at various temperatures of 20,50,100,150 and 200°C using a pin-on-disc wear testing machine in order to reveal mild-severe(M-S)wear transition mechanism ... Dry sliding wear tests were performed on Mg97 Zn1 Y2 alloy at various temperatures of 20,50,100,150 and 200°C using a pin-on-disc wear testing machine in order to reveal mild-severe(M-S)wear transition mechanism during elevated-temperature wear testing.It was shown that at each test temperature,the wear rate increased with increasing load,and all wear rate-load curves demonstrated two distinct stages i.e.mild and severe wear stages.The predominant wear mechanisms operating in mild and severe wear stages were analyzed,and they were indicated in the mild and severe wear regimes of a wear mechanism transition map,respectively.M-S wear transition mechanism was analyzed by comparison of microstructure transformation and hardness change in subsurfaces of samples tested in mild and severe wear stages,from which M-S wear transition mechanism was confirmed as softening of surface material arising from dynamic recrystallization(DRX)microstructure transformation.The M-S wear transition load was found to have a linear relationship with test temperature,and decreased with rising test temperature.M-S wear transition obeyed a critical surface DRX temperature(SDT)criterion under given conditions,and the transition loads were estimated at various test temperatures by using the criterion. 展开更多
关键词 Mg-alloys Elevated temperatures Wear rate Wear mechanism Wear transition
下载PDF
Precise calibration of zero-crossing temperature and drift of an ultralow expansion cavity with a clock transition spectrum 被引量:1
13
作者 Hui Liu Kun-Liang Jiang +3 位作者 Jin-Qi Wang Zhuan-Xian Xiong Ling-Xiang He Bao-Long Lu 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第5期150-154,共5页
We report a clock transition spectrum approach,which is used to calibrate the zero-crossing temperature and frequency drift of an ultralow expansion(ULE)cavity with a Hertz level resolution.With this approach,the line... We report a clock transition spectrum approach,which is used to calibrate the zero-crossing temperature and frequency drift of an ultralow expansion(ULE)cavity with a Hertz level resolution.With this approach,the linear and nonlinear drifts of the ULE cavity along a variety of controlled temperatures are clearly presented.When the controlled temperature of ULE cavity is tuned away from the zero-crossing temperature of the ULE cavity,the cavity shows larger and larger nonlinear drift.According to our theoretical analysis and experimental results,we investigate more details of the drift property of the ULE cavity around the zero-crossing temperature,which has seldom been explored before.We can definitely conclude that the zero-crossing temperature of our ULE cavity used in an ytterbium(Yb)lattice clock is around 31.7℃. 展开更多
关键词 clock transition spectra ULE cavity frequency drift zero-crossing temperature
下载PDF
Evaluation of Energy Band Gap, Thermal Conductivity, Phase Transition Temperature and Elastic Response of PS/CdS Semiconducting Optical Nanocomposite 被引量:1
14
作者 Vishal Mathur Kuldeep S. Rathore Kananbala Sharma 《World Journal of Nano Science and Engineering》 2013年第3期93-99,共7页
Thick film of Polystyrene (PS)/CdS semiconducting optical nanocomposite has been synthesized by dispersing nanofiller particles of CdS in PS matrix. The nanostructure of the CdS particles has been ascertained through ... Thick film of Polystyrene (PS)/CdS semiconducting optical nanocomposite has been synthesized by dispersing nanofiller particles of CdS in PS matrix. The nanostructure of the CdS particles has been ascertained through X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Small angle x-ray scattering analysis has been performed in order to ascertain nanocomposite character of the PS/CdS sample. Scanning Electron Microscopy (SEM) analyses of these samples have been carried out to establish the surface morphology. Optical Absorption Spectroscopy is used to measure the energy band gap of PS/CdS nanocomposite by using Tauc relation whereas Transient Plane Source Technique is used for the determination of thermal conductivity of the prepared samples. The phase transition temperature and elastic response of the prepared samples have been ascertained through Dynamic Mechanical Analyzer (DMA). This study reveals that the thermal conductivity, Young’s modulus and the toughness of the material are greatly influenced by the existence of interfacial energetic interaction between dispersed CdS nanofiller particles and matrix of PS. 展开更多
关键词 Polymer NANOCOMPOSITE SAXS Analysis Energy BAND Gap Phase transition temperature Thermal Transport Property ELASTIC Properties
下载PDF
Realization of laser textured brass surface via temperature tuning for surface wettability transition 被引量:2
15
作者 Huangping Yan Mohamed Raiz B Abdul Rashid +2 位作者 Si Ying Khew Fengping Li Minghui Hong 《光电工程》 CAS CSCD 北大核心 2017年第6期587-592,共6页
Superhydrophobic surfaces have attracted extensive interests and researches into their fundamentals and potential applications.Laser texturing provides the convenience to fabricate the hierarchical micro/nanostructure... Superhydrophobic surfaces have attracted extensive interests and researches into their fundamentals and potential applications.Laser texturing provides the convenience to fabricate the hierarchical micro/nanostructures for superhydrophobicity.However,after laser texturing,long wettability transition time from superhydrophilicity to superhydrophobicity is a barrier to mass production and practical industrial applications.External stimuli have been applied to change the surface composition and/or the surface morphology to reduce wettability transition time.Herein,by temperature tuning,wettability transition of laser textured brass surfaces is investigated.Scanning electron microscopy and surface contact angle measurement are employed to characterize the surface morphology and wettability behavior of the textured brass surfaces.By low-temperature heating(100℃~150℃),partial deoxidation of the top Cu O layer occurs to form hydrophobic Cu_2O.Therefore,superhydrophobicity without any chemical coating and surface modification could be achieved in a short time.Furthermore,after low-temperature heating,the low adhesive force between the water droplet and the sample surface is demonstrated for the laser textured brass surface.This study provides a simple method to fabricate the micro/nanostructure surfaces with controllable wettability for the potential applications. 展开更多
关键词 纳米结构 激光技术 发展现状 润湿性
下载PDF
CHARACTERISTIC TRANSITION TEMPERATURE OF BRITTLENESS OF LOW CARBON STEEL
16
作者 HUANG Zheng Institute of Physics,Academia Sinica,Beijing,ChinaYAO Mei Harbin Institute of Technology,Harbin,China Institute of Physics,Academia Sinica,Beijing 100080,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1990年第5期332-337,共6页
On the basis of analysis of low carbon steel fracture macro-features and micro-processes at low temperature,the definition was given of the characteristic transition temperature of brittleness,T_(pm),and its physical ... On the basis of analysis of low carbon steel fracture macro-features and micro-processes at low temperature,the definition was given of the characteristic transition temperature of brittleness,T_(pm),and its physical meaning was expounded.Discussion was carried out of phys- ical characteristic of variation at T_(pm) in respect of the fracture toughness and property of crack arrest.In addition,research was made on the application of T_(pm),which can give infor- mation about the transition of the fracture toughness,the property of crack arrest and critical crack size,to estimation the brittleness of low carbon steel at low temperatures. 展开更多
关键词 low carbon steel low temperature brittleness transition temperature cleavage fracture fracture toughness craek arrest
下载PDF
EFFECT OF DUCTILE-BRITYLE TRANSITION TEMPERATURE OF Al-Si COATING ON FATIGUE PROPERTIES OF Ni-BASE SUPERALLOYS
17
作者 ZHANG Detang Beijing Institute of Aeronautical Materials,Beijing,China Beijing Institute of Aeronautical Materials,Beijing 100095,China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1990年第6期435-438,共4页
The effect of Al content on the ductile-brittle transition temperature of Al-Si coating and the effect of fracture behaviour.of the Al-Si coating on the fatigue properties of Ni-base superallovs have been investigated... The effect of Al content on the ductile-brittle transition temperature of Al-Si coating and the effect of fracture behaviour.of the Al-Si coating on the fatigue properties of Ni-base superallovs have been investigated to propose the theoretical basis of search for an optimum of mechanical properties of the high temperature coating on Ni-base alloys. 展开更多
关键词 Al-Si coating Ni-base superalloy ductile-brittle transition temperature FATIGUE
下载PDF
Effects of C60 on the Glass Transition Temperature of Carbazole-based Photorefractive Polyphosphazenes
18
作者 陈百利 CHEN Shufan +5 位作者 LUO Xuan FANG Yu ZHANG Qingjun HUANG Chuanqun DENG Qinghua 吴卫东 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第4期974-979,共6页
The bi-functional carbazole-based photorefractive polyphosphazenes with different content of C_(60)-doped were fabricated. The glass transition temperature(T_g) of these polymer composite materials was determined ... The bi-functional carbazole-based photorefractive polyphosphazenes with different content of C_(60)-doped were fabricated. The glass transition temperature(T_g) of these polymer composite materials was determined using a differential scanning calorimetric(DSC) method. According to the DSC measurement results with different heating rates, the variation of T_g and the active energy of glass transition(E_g) were analyzed in detail. The analysis results indicate that the transition region shifts to higher temperatures with increasing heating rate, and C_(60) content(below 1.0 wt%) can influence the T_g of photorefractive polyphosphazenes. The T_g first increases and then decreases with the C_(60) content(below 1.0 wt%). The probable causes of the influence of C_(60) on T_g was proposed. 展开更多
关键词 differential scanning calorimetric (DSC) fullerene C60 carbazole-based photorefractivepolyphosphazenes glass transition temperature (Tg) active energy of glass transition (Eg)
下载PDF
POLYMER CHAIN DIFFUSION AT A TEMPERATURE BELOW ITS BULK GLASS TRANSITION TEMPERATURE
19
作者 TisatoKajiyama DaisukeKawaguchi +1 位作者 KeijiTanaka TisatoKajiyama 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2003年第2期141-146,共6页
In this study, it was examined whether the dynamics of polymer chains at a surface is different from that in thebulk, and if so, to what extent they differ in terms of surface glass transition temperature and diffusio... In this study, it was examined whether the dynamics of polymer chains at a surface is different from that in thebulk, and if so, to what extent they differ in terms of surface glass transition temperature and diffusion coefficient. Obtainedresults clearly indicate that surface chains can travel for a relatively large distance in comparison with the characteristiclength scale of usual segmental motion even at a temperature below its bulk glass transition temperature, T_g^b. This isconsistent with our previous results that the surface glass transition temperature is much lower than the corresponding T_g^b.Also, it was experimentally revealed that there was a gradient of molecular motion in the surface region. 展开更多
关键词 Surface molecular motion Surface glass transition temperature POLYSTYRENE Poly(styrene-block-methyl methacrylate)
下载PDF
A NEURAL NETWORK STUDY ON GLASS TRANSITION TEMPERATURE OF POLYMERS
20
作者 章林溪 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2002年第1期25-30,共6页
In this paper, an artificial neural network model is adopted to study the glass transition temperature of polymers. In our artificial neural networks, the input nodes are the characteristic ratio C-infinity, the avera... In this paper, an artificial neural network model is adopted to study the glass transition temperature of polymers. In our artificial neural networks, the input nodes are the characteristic ratio C-infinity, the average molecular weight M-e between entanglement points and the molecular weight M-mon of repeating unit. The output node is the glass transition temperature T-g, and the number of the hidden layer is 6. We found that the artificial neural network simulations are accurate in predicting the outcome for polymers for which it is not trained. The maximum relative error for predicting of the glass transition temperature is 3.47%, and the overall average error is only 2.27%. Artificial neural networks may provide some new ideas to investigate other properties of the polymers. 展开更多
关键词 neural network glass transition temperature
下载PDF
上一页 1 2 158 下一页 到第
使用帮助 返回顶部