In this work, experiment efforts were devoted to study the effect of the longitudinal slope of channel on the discharge coefficient for ogee spillway and broad crested weir. A comprehensive laboratory study including ...In this work, experiment efforts were devoted to study the effect of the longitudinal slope of channel on the discharge coefficient for ogee spillway and broad crested weir. A comprehensive laboratory study including 17 tests was conducted to estimate the variation of the discharge coefficient due to variation of the longitudinal slope. It was shown that the discharge coefficient is significantly increasing with the increase of the slope by more than 90% or 75% and 80% or 70% for weir and spillway in case of excluding or including the approach velocity head, respectively. Also, CFD (computational fluid dynamics) with a help of Comsol-multyphsics program was used to simulate the problem. The program explained that the linear distribution of the hydraulic pressure changes to a non-linear distribution as the longitudinal slope is considered. Consequently, the values of the discharge coefficient are also affected.展开更多
The main purpose of broad crested weir used in open channels is to raise and control upstream (U/S) water level. In this study, a new performance was added to this weir, by making a step at downstream (D/S) of weir. T...The main purpose of broad crested weir used in open channels is to raise and control upstream (U/S) water level. In this study, a new performance was added to this weir, by making a step at downstream (D/S) of weir. The energy dissipation, the height of the weir/the upstream water height ratio and Froude number relationships (E% – P/h – Fr) for three range of flume slop S = 0.0, 0.002 and 0.004 were simulated. The experiments were performed in a laboratory horizontal channel of 4.6 m length, 0.3 m width and 0.3 m depth for a wide range of discharge. The D/S step height of the weir was 7.5 cm. FLUENT software was used as numerical model which represent a type of Computational Fluid Dynamics (CFD) model in order to simulate flow over weirs. The Volume of Fluid (VOF) method with the Standard k – ε turbulence model was used to estimate the free surface profile and the structured mesh with high concentration near the wall regions. The experimental results of the water surface profile gave a high agreement with the results of the numerical models. The maximum value 28.78 of E% was obtained in single step broad crested weir in the experimental result and 27.35 in numerical result at S = 0.004. Finally, the range of the relative error of the energy dissipation between experimental and numerical results was achieved and the maximum was 6.76 in all runs.展开更多
文摘In this work, experiment efforts were devoted to study the effect of the longitudinal slope of channel on the discharge coefficient for ogee spillway and broad crested weir. A comprehensive laboratory study including 17 tests was conducted to estimate the variation of the discharge coefficient due to variation of the longitudinal slope. It was shown that the discharge coefficient is significantly increasing with the increase of the slope by more than 90% or 75% and 80% or 70% for weir and spillway in case of excluding or including the approach velocity head, respectively. Also, CFD (computational fluid dynamics) with a help of Comsol-multyphsics program was used to simulate the problem. The program explained that the linear distribution of the hydraulic pressure changes to a non-linear distribution as the longitudinal slope is considered. Consequently, the values of the discharge coefficient are also affected.
文摘The main purpose of broad crested weir used in open channels is to raise and control upstream (U/S) water level. In this study, a new performance was added to this weir, by making a step at downstream (D/S) of weir. The energy dissipation, the height of the weir/the upstream water height ratio and Froude number relationships (E% – P/h – Fr) for three range of flume slop S = 0.0, 0.002 and 0.004 were simulated. The experiments were performed in a laboratory horizontal channel of 4.6 m length, 0.3 m width and 0.3 m depth for a wide range of discharge. The D/S step height of the weir was 7.5 cm. FLUENT software was used as numerical model which represent a type of Computational Fluid Dynamics (CFD) model in order to simulate flow over weirs. The Volume of Fluid (VOF) method with the Standard k – ε turbulence model was used to estimate the free surface profile and the structured mesh with high concentration near the wall regions. The experimental results of the water surface profile gave a high agreement with the results of the numerical models. The maximum value 28.78 of E% was obtained in single step broad crested weir in the experimental result and 27.35 in numerical result at S = 0.004. Finally, the range of the relative error of the energy dissipation between experimental and numerical results was achieved and the maximum was 6.76 in all runs.