期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Broadband tunable optical amplification based on modulation instability characteristic of high-birefringence photonic crystal fibers 被引量:1
1
作者 王河林 杨爱军 冷雨欣 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第7期226-231,共6页
A novel high-birefringence photonic crystal fiber (HB-PCF) with two zero-dispersion wavelengths (ZDWs) is designed, and an extraordinarily high modal birefringence of 1.56×10-2 is obtained at pump wavelength ... A novel high-birefringence photonic crystal fiber (HB-PCF) with two zero-dispersion wavelengths (ZDWs) is designed, and an extraordinarily high modal birefringence of 1.56×10-2 is obtained at pump wavelength λp=1850nm. With the designed HB-PCF, the effect of the pump parameters on the modulation instability (MI) in the anomalous dispersion region close to the second ZDWs of the HB-PCF is comprehensively studied in this work. A broadband and tunable optical amplification is achieved by controlling the pump power and the pump wavelength based on the combined operation of Raman effect and cross phase modulation. By optimizing the pump parameters, the amplification bandwidth along the fiber slow axis reaches 152 nm for the pump power Pp=280W and the pump wavelength λp=1675nm, while the gain bandwidth along the fiber fast axis is 165 nm for the pump power Pp=600W and the pump wavelength λp=1818nm. 展开更多
关键词 modulation instability broadband amplification high-birefringence fiber
下载PDF
Low-Threshold Broadband Spectrum Generation by Amplification of Cascaded Stimulated Raman Scattering in an Ytterbium-Doped Fiber Amplifier
2
作者 雷成敏 宋锐 +1 位作者 靳爱军 侯静 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第7期59-62,共4页
We present an experimental study on low-threshold broadband spectrum generation mainly due to the amplirfication of the cascaded stimulated Raman scattering (SRS) effect in a four-stage fiber master oscillator power... We present an experimental study on low-threshold broadband spectrum generation mainly due to the amplirfication of the cascaded stimulated Raman scattering (SRS) effect in a four-stage fiber master oscillator power amplifier system. The cascaded SRS is achieved by using a long passive fiber pumped by a pulsed fiber laser cen: tered at wavelength 1064 nm. The amplified spontaneous emission during the amplification process is efficiently suppressed by cutting the length of the passive fiber and by using a double-clad ytterbium-doped fiber amplifier. The generated broadband spectrum spans from 960nm to 1700nm with maximum average output 13.6 W and average spectral power density approximately 17. 7 mW/nm. 展开更多
关键词 Low-Threshold broadband Spectrum Generation by amplification of Cascaded Stimulated Raman Scattering in an Ytterbium-Doped Fiber Amplifier SRS
下载PDF
Amplification of fluorescence using collinear picosecond optical parametric amplification at degeneracy
3
作者 张静 张秋琳 +3 位作者 江曼 张东香 冯宝华 张景园 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第8期278-283,共6页
We demonstrate the output characteristic of broadband parametric amplification of incoherent light pulses in a 355-nm pumped degenerate picosecond optical parametric amplification with either saturated or unsaturated ... We demonstrate the output characteristic of broadband parametric amplification of incoherent light pulses in a 355-nm pumped degenerate picosecond optical parametric amplification with either saturated or unsaturated amplification. The optical parametric amplifier is seeded by the fluorescence generated in a solution of pyridine-1 dye in ethanol. With the saturated amplification, we can obtain high energy incoherent light pulses, whose full width at half maximum bandwidth varies from 16 nm to 53 nm for the different phase matching angles near degeneracy. Moreover, the unsaturated bandwidth of the amplified pulses fits well to the calculated result at degeneracy. Selecting s-polarized fluorescence with a Glan-Taylor prism, the maximum bandwidth of the amplified fluorescence is found to be 59 nm for a purely s-polarized seed. The maximum output energy is 0.67 mJ for the optical parametric amplifier. By using an optical filter and compressor, the generated high energy incoherent light has great potential as the incoherent pump, signal or idler wave of a parametric down-conversion process, so that a wave with a high degree of coherence can be generated from an incoherent pump light. 展开更多
关键词 broadband parametric amplification FLUORESCENCE DEGENERACY picosecond optical parametric amplifier
下载PDF
Optimization control of modulation-instability gain in photonic crystal fibres with two zero-dispersion wavelengths
4
作者 王河林 冷雨欣 徐至展 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第12期5375-5384,共10页
We design three kinds of photonic crystal fibres (PCF) with two zero-dispersion wavelengths (ZDWs) using the improved full vector index method (FVIM) and finite-difference frequency domain (FDFD} techniques. Ba... We design three kinds of photonic crystal fibres (PCF) with two zero-dispersion wavelengths (ZDWs) using the improved full vector index method (FVIM) and finite-difference frequency domain (FDFD} techniques. Based on these designed fibres, the effect of fibre structure, pump power and wavelength on the modulation instability (MI) gain in the anomalous dispersion region close to the second ZDW of the PCFs is comprehensively analysed in this paper. The analytical results show that an optimal MI gain can be obtained when the optimal pump wavelength (1530 nm) is slightly shorter than the second ZDW (1538 nm) and the optimal pump power is 250 W. Importantly, the total MI gain bandwidth has been increased to 260 nm for the first time, so far as we know, for an optimally-designed fibre with ∧ = 1.4 nm and d/∧ = 0.676, and the gain profile became much smoother. The optimal pump wavelength relies on the second ZDW of the PCF whereas the optimal pump power depends on the corporate operation of the optimal fibre structure and optimal pump wavelength, which is important in designing the most appropriate PCF to attain higher broadband and gain amplification. 展开更多
关键词 modulation instability gain broadband amplification optimization control
下载PDF
Enhancement of fluorescence emission and signal gain at 1.53 μm in Er^(3+)/Ce^(3+) co-doped tellurite glass fiber
5
作者 杨风景 黄波 +4 位作者 吴立波 齐亚伟 彭胜喜 李军 周亚训 《Optoelectronics Letters》 EI 2015年第5期361-365,共5页
Er3+/Ce3+ co-doped tellurite glasses with composition of TeO2-GeO2-Li2O-Nb2O5 were prepared using conventional melt-quenching technique for potential applications in Er3+-doped fiber amplifier(EDFA). The absorption sp... Er3+/Ce3+ co-doped tellurite glasses with composition of TeO2-GeO2-Li2O-Nb2O5 were prepared using conventional melt-quenching technique for potential applications in Er3+-doped fiber amplifier(EDFA). The absorption spectra, up-conversion spectra and 1.53 μm band fluorescence spectra of glass samples were measured. It is shown that the 1.53 μm band fluorescence emission intensity of Er3+-doped tellurite glass fiber is improved obviously with the introduction of an appropriate amount of Ce3+, which is attributed to the energy transfer(ET) from Er3+ to Ce3+. Meanwhile, the 1.53 μm band optical signal amplification is simulated based on the rate and power propagation equations, and an increment in signal gain of about 2.4 d B at 1 532 nm in the Er3+/Ce3+ co-doped tellurite glass fiber is found. The maximum signal gain reaches 29.3 d B on a 50 cm-long fiber pumped at 980 nm with power of 100 m W. The results indicate that the prepared Er3+/Ce3+ co-doped tellurite glass is a good gain medium applied for 1.53 μm broadband and high-gain EDFA. 展开更多
关键词 EDFA amplifier pumped glasses attributed amplification Ce in Er broadband reaches
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部