To the problem of the unknown underwater target detection, according to the feature that the underwater target radiated noise contains the stable line spectrum, a weighted method based on the main-to-side lobe ratio ...To the problem of the unknown underwater target detection, according to the feature that the underwater target radiated noise contains the stable line spectrum, a weighted method based on the main-to-side lobe ratio (MSLR) is proposed for broadband beam-forming. This weighted method can be implemented by using the following steps. Firstly, optimize the spatial spectrum of each frequency unit by the second-order cone programming (SOCP), and obtain the optimized spatial spectrum with lower side lobe. Secondly, construct weighting factors based on the MSLR of the optimized spatial spectrums to from weight factors. Lastly, cumulate the spatial spectrum of each frequency unit via the weight statistical method of this paper. This method can restrain the disturbance of background noise, enhance the output signal-to-noise ratio (SNR), and overcome the difficulty of traditional four-dimensional display. The theoretical analysis and simulation results both verify that this method can well enhance the spatial spectrum of line spectrum units, restrain the spatial spectrum of background noise units, and improve the performance of the broadband beam-forming.展开更多
The approximate analytical expressions of the apertured broadband beams in the far field with Gaussian and Laguerre-Gaussian spatial modes are presented. For the radially polarized Laguerre-Gaussian beam, the result r...The approximate analytical expressions of the apertured broadband beams in the far field with Gaussian and Laguerre-Gaussian spatial modes are presented. For the radially polarized Laguerre-Gaussian beam, the result reveals that the electromagnetic field in the far field is transverse magnetic. The influences of bandwidth (Г) and truncation parameter (Co) on the transverse intensity distribution of the Gaussian beam and on the energy flux distribution of radially polarized Laguerre-Gaussian beam are analysed.展开更多
This contribution is focused on applications of spectroscopic methods for the precise control of deposition processes. In this context, the present study gives a review on selected combinations of conventional and ion...This contribution is focused on applications of spectroscopic methods for the precise control of deposition processes. In this context, the present study gives a review on selected combinations of conventional and ion deposition techniques with different broadband online spectrophotometric systems. Besides two systems operating in the VIS- and NIR-spectral range in combination with ion processes, also a monochromator system developed for conventional deposition processes in the DUV/VUV-spectral range will be discussed. The considerations will be concluded by a comparison of the major advantages of the specific combinations of processes with online monitoring concepts and by a brief outlook concerning future challenges.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61372180)the National Key Scientific Instrument Equipment Development Project of China(Grant No.2013YQ140431)
文摘To the problem of the unknown underwater target detection, according to the feature that the underwater target radiated noise contains the stable line spectrum, a weighted method based on the main-to-side lobe ratio (MSLR) is proposed for broadband beam-forming. This weighted method can be implemented by using the following steps. Firstly, optimize the spatial spectrum of each frequency unit by the second-order cone programming (SOCP), and obtain the optimized spatial spectrum with lower side lobe. Secondly, construct weighting factors based on the MSLR of the optimized spatial spectrums to from weight factors. Lastly, cumulate the spatial spectrum of each frequency unit via the weight statistical method of this paper. This method can restrain the disturbance of background noise, enhance the output signal-to-noise ratio (SNR), and overcome the difficulty of traditional four-dimensional display. The theoretical analysis and simulation results both verify that this method can well enhance the spatial spectrum of line spectrum units, restrain the spatial spectrum of background noise units, and improve the performance of the broadband beam-forming.
基金supported by the Doctorial Start-up Fund of Hengyang Normal University,China (Grant No. 09B06)the Natural Science Foundation of Hunan Province,China (Grant No. 08jj3001)
文摘The approximate analytical expressions of the apertured broadband beams in the far field with Gaussian and Laguerre-Gaussian spatial modes are presented. For the radially polarized Laguerre-Gaussian beam, the result reveals that the electromagnetic field in the far field is transverse magnetic. The influences of bandwidth (Г) and truncation parameter (Co) on the transverse intensity distribution of the Gaussian beam and on the energy flux distribution of radially polarized Laguerre-Gaussian beam are analysed.
文摘This contribution is focused on applications of spectroscopic methods for the precise control of deposition processes. In this context, the present study gives a review on selected combinations of conventional and ion deposition techniques with different broadband online spectrophotometric systems. Besides two systems operating in the VIS- and NIR-spectral range in combination with ion processes, also a monochromator system developed for conventional deposition processes in the DUV/VUV-spectral range will be discussed. The considerations will be concluded by a comparison of the major advantages of the specific combinations of processes with online monitoring concepts and by a brief outlook concerning future challenges.