The upgrade project of the Hefei Light Source storage ring is under way. In this paper, the broadband impedances of resistive wall and coated ceramic vacuum chamber are calculated using the analytic formula, and the w...The upgrade project of the Hefei Light Source storage ring is under way. In this paper, the broadband impedances of resistive wall and coated ceramic vacuum chamber are calculated using the analytic formula, and the wake fields and impedances of other designed vacuum chambers are simulated by CST code, and then a broadband impedance model is obtained. Using the theoretical formula, longitudinal and transverse single bunch instabilities are discussed. With the carefully-designed vacuum chamber, we find that the thresholds of the beam instabilities are higher than the beam current goal.展开更多
In this paper, we present a portable single-cell analysis system with the hydrodynamic cell trapping and the broadband electrical impedance spectroscopy (EIS). Using the least flow resistance path principle, the hyd...In this paper, we present a portable single-cell analysis system with the hydrodynamic cell trapping and the broadband electrical impedance spectroscopy (EIS). Using the least flow resistance path principle, the hydrodynamic cell trapping in serpentine arrays can be carried out in a deterministic and automatic manner without the assistance of any external fields. The experimental results show that a cell trap rate of higher than 95% can be easily achieved in our ceil trapping microdevices. Using the maximum length sequences (MLS) technique, our home-made EIS is capable of measuring the impedance spectrum ranging from 1.953 kHz to 1 MHz in approximately 0.5 ms. Finally, on the basis of the developed single-cell analysis system, we precisely monitor the trapping process of human breast tumor cells (MCF-7 cells) according to the changes of electrical impedance. The MCF-7 cells with different trapping conditions or sizes can also be clearly distinguished through the impedance signals. Our portable single-cell analysis system may provide a promising tool to monitor single cells for long periods of time or to discriminate cell types.展开更多
In this paper, a fundamental advancement of the basic helix design which expands to array having good bandwidth is proposed. The helix is inserted in a cavity. The result is a new antenna design that offers the perfor...In this paper, a fundamental advancement of the basic helix design which expands to array having good bandwidth is proposed. The helix is inserted in a cavity. The result is a new antenna design that offers the performance characteristics and advantages of the conven-tional helix but in a much more compact physical size envelope. A 4-element rectangular helical array has been designed. For miniaturization and impedance matching, the helical wire is replaced by a rectangular cross sectioned strip. It has been observed that when the helix is inserted in a cavity, it behaves differently from a normal helical antenna. The effects of the cavity on the number of turns, the impedance of total antenna, and the reflection coefficient have been analyzed. The array is designed for 2.4 GHz. The return loss obtained is less than - 10 dB and the bandwidth is more than 1.3 GHz for the array.展开更多
基金Supported by Natural Science Foundation of China(11175182,11175180)
文摘The upgrade project of the Hefei Light Source storage ring is under way. In this paper, the broadband impedances of resistive wall and coated ceramic vacuum chamber are calculated using the analytic formula, and the wake fields and impedances of other designed vacuum chambers are simulated by CST code, and then a broadband impedance model is obtained. Using the theoretical formula, longitudinal and transverse single bunch instabilities are discussed. With the carefully-designed vacuum chamber, we find that the thresholds of the beam instabilities are higher than the beam current goal.
基金supported by the National Natural Science Foundation of China(Grant Nos.51505082,51775111,51375089 and 81572906)the Natural Science Foundation of Jiangsu Province(Grant No.BK20150606)+3 种基金the"333"Project of Jiangsu Province(Grant No.BRA2015291)the Jiangsu Graduate Innovative Research Program(Grant No.KYLX_0098)the Scientific Research Foundation of Graduate School of Southeast University(Grant No.YBJJ1428)the Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems(Grant No.GZKF-201501)
文摘In this paper, we present a portable single-cell analysis system with the hydrodynamic cell trapping and the broadband electrical impedance spectroscopy (EIS). Using the least flow resistance path principle, the hydrodynamic cell trapping in serpentine arrays can be carried out in a deterministic and automatic manner without the assistance of any external fields. The experimental results show that a cell trap rate of higher than 95% can be easily achieved in our ceil trapping microdevices. Using the maximum length sequences (MLS) technique, our home-made EIS is capable of measuring the impedance spectrum ranging from 1.953 kHz to 1 MHz in approximately 0.5 ms. Finally, on the basis of the developed single-cell analysis system, we precisely monitor the trapping process of human breast tumor cells (MCF-7 cells) according to the changes of electrical impedance. The MCF-7 cells with different trapping conditions or sizes can also be clearly distinguished through the impedance signals. Our portable single-cell analysis system may provide a promising tool to monitor single cells for long periods of time or to discriminate cell types.
文摘In this paper, a fundamental advancement of the basic helix design which expands to array having good bandwidth is proposed. The helix is inserted in a cavity. The result is a new antenna design that offers the performance characteristics and advantages of the conven-tional helix but in a much more compact physical size envelope. A 4-element rectangular helical array has been designed. For miniaturization and impedance matching, the helical wire is replaced by a rectangular cross sectioned strip. It has been observed that when the helix is inserted in a cavity, it behaves differently from a normal helical antenna. The effects of the cavity on the number of turns, the impedance of total antenna, and the reflection coefficient have been analyzed. The array is designed for 2.4 GHz. The return loss obtained is less than - 10 dB and the bandwidth is more than 1.3 GHz for the array.