A high-throughput multi-plume pulsed-laser deposition (MPPLD) system has been demonstrated and compared to previous techniques. Whereas most combinatorial pulsedlaser deposition (PLD) systems have focused on achie...A high-throughput multi-plume pulsed-laser deposition (MPPLD) system has been demonstrated and compared to previous techniques. Whereas most combinatorial pulsedlaser deposition (PLD) systems have focused on achieving thickness uniformity using sequential multilayer deposition and masking followed by post-deposition annealing, MPPLD directly deposits a compositionally varied library of compounds using the directionality of PLD plumes and the resulting spatial variations of deposition rate. This system is more suitable for high-throughput compound thin-film fabrication.展开更多
Benefiting from the abrupt phase changes within subwavelength thicknesses,metasurfaces have been widely applied for lightweight and compact optical systems.Simultaneous broadband and high-efficiency characteristics ar...Benefiting from the abrupt phase changes within subwavelength thicknesses,metasurfaces have been widely applied for lightweight and compact optical systems.Simultaneous broadband and high-efficiency characteristics are highly attractive for the practical implementation of metasurfaces.However,current metasurface devices mostly adopt discrete micro/nano structures,which rarely realize both merits simultaneously.In this paper,dielectric metasurfaces composed of quasi-continuous nanostrips are proposed to overcome this limitation.Via quasi-continuous nanostrips metasurface,a normal focusing metalens and a superoscillatory lens overcoming the diffraction limit are designed and experimentally demonstrated.The quasi-continuous metadevices can operate in a broadband wavelength ranging from 450 nm to 1000nm and keep a high power efficiency.The average efficiency of the fabricated metalens reaches 54.24%,showing a significant improvement compared to the previously reported metalenses with the same thickness.The proposed methodology can be easily extended to design other metadevices with the advantages of broadband and high-efficiency in practical optical systems.展开更多
An experimental study of bioheat transfer characteristics induced bypulsed-laser irradiation was presented. The heat transfer characteristics of bio-materials, and theinfluences of pulse duration, power density, speci...An experimental study of bioheat transfer characteristics induced bypulsed-laser irradiation was presented. The heat transfer characteristics of bio-materials, and theinfluences of pulse duration, power density, species of bio-materials, thickness and initialmoisture content of bio-materials on heat transfer were studied in details. The experimental resultsindicate that the penetration and absorption of laser in bio-materials are considerable, the heattransfer inside the bio-materials should include the effects of volumetric absorption, pulseduration, power density, bio-materials thickness, and material species have a significant influenceon the temperature variation.展开更多
In this paper,a simple adaptive power dividing function for the design of a dual-input Doherty power amplifier(DPA)is presented.In the presented approaches,the signal separation function(SSF)at different frequency poi...In this paper,a simple adaptive power dividing function for the design of a dual-input Doherty power amplifier(DPA)is presented.In the presented approaches,the signal separation function(SSF)at different frequency points can be characterized by a polynomial.And in the practical test,the coefficients of SSF can be determined by measuring a small number of data points of input power.Same as other dualinput DPAs,the proposed approach can also achieve high output power and back-off efficiency in a broadband operation band by adjusting the power distribution ratio flexibly.Finally,a 1.5-2.5 GHz highefficiency dual-input Doherty power amplifier is implemented according to this approach.The test results show that the peak power is 48.6-49.7d Bm,and the 6-d B back-off efficiency is 51.0-67.0%,and the saturation efficiency is 52.4-74.6%.The digital predistortion correction is carried out at the frequency points of 1.8/2.1GHz,and the adjacent channel power ratio is lower than-54.5d Bc.Simulation and experiment results can verify the effectiveness and correctness of the proposed method.展开更多
Broadband electromagnetic(EM)wave absorption materials play an important role in military stealth and health protection.Herein,metal–organic frameworks(MOFs)-derived magnetic-carbon CoNiM@C(M=Cu,Zn,Fe,Mn)microspheres...Broadband electromagnetic(EM)wave absorption materials play an important role in military stealth and health protection.Herein,metal–organic frameworks(MOFs)-derived magnetic-carbon CoNiM@C(M=Cu,Zn,Fe,Mn)microspheres are fabricated,which exhibit flower-like nano–microstructure with tunable EM response capacity.Based on the MOFs-derived CoNi@C microsphere,the adjacent third element is introduced into magnetic CoNi alloy to enhance EM wave absorption performance.In term of broadband absorption,the order of efficient absorption bandwidth(EAB)value is Mn>Fe=Zn>Cu in the CoNiM@C microspheres.Therefore,MOFs-derived flower-like CoNiMn@C microspheres hold outstanding broadband absorption and the EAB can reach up to 5.8 GHz(covering 12.2–18 GHz at 2.0 mm thickness).Besides,off-axis electron holography and computational simulations are applied to elucidate the inherent dielectric dissipation and magnetic loss.Rich heterointerfaces in CoNiMn@C promote the aggregation of the negative/positive charges at the contacting region,forming interfacial polarization.The graphitized carbon layer catalyzed by the magnetic CoNiMn core offered the electron mobility path,boosting the conductive loss.Equally importantly,magnetic coupling is observed in the CoNiMn@C to strengthen the magnetic responding behaviors.This study provides a new guide to build broadband EM absorption by regulating the ternary magnetic alloy.展开更多
A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(...A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(FSS),which is printed on PI using conductive ink.To investigate this absorber,both one-dimensional analogous circuit analysis and three-dimensional full-wave simulation based on a physical model are provided.Various crucial electromagnetic properties,such as absorption,effective impedance,complex permittivity and permeability,electric current distribution and magnetic field distribution at resonant peak points,are studied in detail.Analysis shows that the working frequency of this absorber covers entire S,C,X,Ku,K and Ka bands with a minimum thickness of 0.098λ_(max)(λ_(max) is the maximum wavelength in the absorption band),and the fractional bandwidth(FBW)reaches 181.1%.Moreover,the reflection coefficient is less than-10 dB at 1.998 GHz–40.056 GHz at normal incidence,and the absorptivity of the plane wave is greater than 80%when the incident angle is smaller than 50°.Furthermore,the proposed absorber is experimentally validated,and the experimental results show good agreement with the simulation results,which demonstrates the potential applicability of this absorber at 2 GHz–40 GHz.展开更多
With the boom of the communication systems on some independent platforms(such as satellites,space stations,airplanes,and vessels),co-site interference is becoming prominent.The adaptive interference cancellation metho...With the boom of the communication systems on some independent platforms(such as satellites,space stations,airplanes,and vessels),co-site interference is becoming prominent.The adaptive interference cancellation method has been adopted to solve the co-site interference problem.But the broadband interference cancellation performance of traditional Adaptive Co-site Interference Cancellation System(ACICS)with large delay mismatching and antenna sway is relatively poor.This study put forward an Adaptive Co-site Broadband Interference Cancellation System With Two Auxiliary Channels(ACBICS-2A).The system model was established,and the steady state weights and Interference Cancellation Ratio(ICR)were deduced by solving a time-varying differential equation.The relationship of ICR,system gain,modulation factor,interference signal bandwidth and delay mismatching degree was acquired through an in-depth analysis.Compared with traditional adaptive interference cancellation system,the proposed ACBICS-2A can improve broadband interference cancellation ability remarkably with large delay mismatching and antenna sway for the effect of auxiliary channel.The maximum improved ICR is more than 25 dB.Finally,the theoretical and simulation results were verified by experiments.展开更多
In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation pr...In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment.展开更多
Metalenses with achromatic performance offer a new opportunity for high-quality imaging with an ultracompact configuration;however,they suffer from complex fabrication processes and low focusing efficiency.In this stu...Metalenses with achromatic performance offer a new opportunity for high-quality imaging with an ultracompact configuration;however,they suffer from complex fabrication processes and low focusing efficiency.In this study,we propose an efficient design method for achromatic microlenses on a wavelength scale using materials with low dispersion,an adequately designed convex surface,and a thickness profile distribution.By taking into account the absolute chromatic aberration,relative focal length shift(FLS),and numerical aperture(NA),microlens with a certain focal length can be realized through our realized map of geometric features.Accordingly,the designed achromatic microlenses with low-dispersion fused silica were fabricated using a focused ion beam,and precise surface profiles were obtained.The fabricated microlenses exhibited a high average focusing efficiency of 65%at visible wavelengths of 410-680 nm and excellent achromatic capability via white light imaging.Moreover,the design exhibited the advantages of being polarization-insensitive and near-diffraction-limited.These results demonstrate the effectiveness of our proposed achromatic microlens design approach,which expands the prospects of miniaturized optics such as virtual and augmented reality,ultracompact microscopes,and biological endoscopy.展开更多
With the development of wireless communication technology,an urgent problem to be solved is co-site broadband interference on independent communication platforms such as satellites,space stations,aircrafts and ships.A...With the development of wireless communication technology,an urgent problem to be solved is co-site broadband interference on independent communication platforms such as satellites,space stations,aircrafts and ships.Also,the problem of strong selfinterference rejection should be solved in the co-time co-frequency full duplex mode which realizes spectrum multiplication in 5G communication technology.In the research of such interference rejection,interference cancellation technology has been applied.In order to reject multipath interference,multitap double LMS(Least Mean Square)loop interference cancellation system is often used for cancelling RF(Radio Frequency)domain interference cancelling.However,more taps will lead to a more complex structure of the cancellation system.A novel tap single LMS loop adaptive interference cancellation system was proposed to improve the system compactness and reduce the cost.In addition,a mathematical model was built for the proposed cancellation system,the correlation function of CP2FSK(Continuous Phase Binary Frequency Shift Keying)signal was derived,and the quantitative relationship was established between the correlation function and the interference signal bandwidth and tap delay differential.The steadystate weights and the expression of the average interference cancellation ratio(ICR)were deduced in the scenes of LOS(Line of Sight)interference with antenna swaying on an independent communication platform and indoor multipath interference.The quantitative relationship was deeply analyzed between the interference cancellation performance and the parameters such as antenna swing,LMS loop gain,and interference signal bandwidth,which was verified by simulation experiment.And the performance of the proposed interference cancellation system was compared with that of the traditional double LMS loop cancellation system.The results showed that the compact single LMS loop cancellation system can achieve an average interference rejection capability comparable to the double LMS loop cancellation system.展开更多
Broadband vibration attenuation is a challenging task in engineering since it is difficult to achieve low-frequency and broadband vibration control simultaneously.To solve this problem,this paper designs a piezoelectr...Broadband vibration attenuation is a challenging task in engineering since it is difficult to achieve low-frequency and broadband vibration control simultaneously.To solve this problem,this paper designs a piezoelectric meta-beam with unidirectional electric circuits,exhibiting promising broadband attenuation capabilities.An analytical model in a closed form for achieving the solution of unidirectional vibration transmission of the designed meta-beam is developed based on the state-space transfer function method.The method can analyze the forward and backward vibration transmission of the piezoelectric meta-beam in a unified manner,providing reliable dynamics solutions of the beam.The analytical results indicate that the meta-beam effectively reduces the unidirectional vibration across a broad low-frequency range,which is also verified by the solutions obtained from finite element analyses.The designed meta-beam and the proposed analytical method facilitate a comprehensive investigation into the distinctive unidirectional transmission behavior and superb broadband vibration attenuation performance.展开更多
Multifunctional metastructure integrated broadband microwave absorption and effective mechanical resistance has attracted much attention.However,multifunctional performance is limited by the lack of theoretical approa...Multifunctional metastructure integrated broadband microwave absorption and effective mechanical resistance has attracted much attention.However,multifunctional performance is limited by the lack of theoretical approaches to integrated design.Herein,a multi-layer impedance gradient honeycomb(MIGH)was designed through theoretical analysis and simulation calculation,and fabricated using 3D printing technique.A theoretical calculation strategy for impedance gradient structure was established based on the electromagnetic parameter equivalent method and the multi-layer finite iterative method.The impedance of MIGH was analyzed by the theoretical calculation strategy to resolve the broadband absorption.Intrinsic loss mechanism of matrix materials and distributions of electric fields,magnetic fields and power loss were analyzed to investigate the absorption mechanism.Experimental results indicated that a 15 mm thick designed metastructure can achieve the absorption more than 88.9%in the frequency range of 2-18 GHz.Moreover,equivalent mechanical parameters of MIGH was calculated by integral method according to the Y-shaped model.Finite Element analysis of stress distributions were carried out to predict the deformation behavior.Mechanical tests demonstrate that MIGH achieved the compression modulus of 22.89 MPa and flexure modulus of 17.05 MPa.The integration of broadband electromagnetic absorption and effective mechanical resistance was achieved by the proposed design principle and fabrication methodology.展开更多
Broadband photon pairs are highly desirable for quantum metrology,quantum sensing,and quantum communication.Such sources are usually designed through type-0 phase-matching spontaneous parametric down-conversion(SPDC)t...Broadband photon pairs are highly desirable for quantum metrology,quantum sensing,and quantum communication.Such sources are usually designed through type-0 phase-matching spontaneous parametric down-conversion(SPDC)that makes the photon pairs hard to separate in the frequency-degenerate case and thus limits their applications.In this paper,we design a broadband frequency-degenerate telecom-band photon pair source via the type-II SPDC in a dispersion-engineered thin-film lithium niobate waveguide,where the polarization modes of photon pairs are orthogonal and thus are easily separated deterministically.With a 5-mm-long waveguide,our design can achieve a bandwidth of 5.56 THz(44.8 nm),which is 8.6 times larger than that of the bulk lithium niobate,and the central wavelength can be flexibly adjusted.Our design is a promising approach towards high-quality integrated photon sources and may have wide applications in photonic quantum technologies.展开更多
Welding voltage and current in arc signals are directly related to arc stability and welding quality.Process experiments with different parameters were organized according to the orthogonal experimental design method ...Welding voltage and current in arc signals are directly related to arc stability and welding quality.Process experiments with different parameters were organized according to the orthogonal experimental design method by constructing an aluminum alloy double-pulse metal inert gas(MIG)welding arc electric signal test platform.The data acquisition system of the aluminum alloy MIG welding process was established to obtain real-time arc signal information reflecting the welding process.The aluminum alloy’s collected double-pulse arc current signals are decomposed adaptively by broadband mode decomposition(BMD).The direct current(DC)signal,pulse signal,distortion signal,ripple signal,and noise signal are separated and extracted,and the composite multiscale fuzzy entropy(CMFE)is calculated for the component set of the electrical signal.The experimental results show that the current waveform obtained by the double-pulse MIG welding current signal is consistent with the corresponding weld forming diagram.Simultaneously,the composite multiscale fuzzy entropy is calculated for the arc characteristic parameters.The rationality of matching process parameters and arc stability of aluminum alloy’s double-pulse MIG welding were evaluated.展开更多
A four-stage monolithic microwave integrated circuits (MMIC) low noise amplifier (LNA) operating from 23 to 36GHz is reported using commercially available 0.15μm PHEMT technology. The LNA is self-biased. To achie...A four-stage monolithic microwave integrated circuits (MMIC) low noise amplifier (LNA) operating from 23 to 36GHz is reported using commercially available 0.15μm PHEMT technology. The LNA is self-biased. To achieve a low noise characteristic, careful optimizations of gate width are performed to reduce gate resistance. Absorption circuits and an elaborate bias structure with a resistor-capacitor network are employed to improve stability. Multiple resonance points and negative feedback technologies are used to widen the bandwidth. Measurements show a noise figure (NF) of less than 2.0dB,and the lowest NF is only 1.6dB at a frequency of 31GHz. In the whole operation band,the LNA has a gain of higher than 26dB,and an input return loss and output return loss of more than 11 and 13dB,respectively. The output power at ldB compression gain of 36GHz is about 14dBm. The chip area is 2.4mm ×1mm.展开更多
A broadband microstrip patch antenna was analyzed and designed.Full wave analysis method(FWAM) was employed to show that a stacked microstrip dual patch antenna(SMDPA) might have a much wider bandwidth than that of ...A broadband microstrip patch antenna was analyzed and designed.Full wave analysis method(FWAM) was employed to show that a stacked microstrip dual patch antenna(SMDPA) might have a much wider bandwidth than that of the ordinanry uni patch one.By means of discrete complex image theory(DCIT),the Sommerfeld integrals (SI) involved were accurately calculated at a speed several hundred times faster than numerical integration method(NIM).The feeding structure of the SMDPA was then improved and the bandwidth was extended to about 22% or more for voltage standing wave ratio (VSWR)s≤2 Finally,a matching network was constructed to obtain a bandwidth of about 25% for s≤1.5.展开更多
We report here the observation result of joint observation of long period tremor signals with broadband seismome-ter,tiltmeter and gravimeter at the HUST(Huazhong University of Science and Technology)station.The obser...We report here the observation result of joint observation of long period tremor signals with broadband seismome-ter,tiltmeter and gravimeter at the HUST(Huazhong University of Science and Technology)station.The observed data were compared and analyzed.Since 2005,the several tens of abnormal tremor signals which are weak,com-plex and duration of 2 to 3 days have been synchronously recorded by the different instruments.The tremor signals have the periodic domain in the range of 3 to 5 minutes,20 to 30 minutes and even more than 1 hour.The observa-tion shows such tremors are a physical existence.The analysis indicates that a part of the tremors caused by the typhoon from the western Pacific Ocean.These tremors have a close relationship with wind velocity of typhoon and distance between the typhoon center and the station.Except these,the cause of others is still unclear.展开更多
A novel unselective regrowth buried heterostructure long-wavelength superluminescent diode (SLD) with a graded composition bulk InGaAs active region is developed by metalorganic vapor phase epitaxy (MOVPE). At a 1...A novel unselective regrowth buried heterostructure long-wavelength superluminescent diode (SLD) with a graded composition bulk InGaAs active region is developed by metalorganic vapor phase epitaxy (MOVPE). At a 150mA injection current, the full width at half maximum of the emission spectrum of the SLD is about 72nm, ranging from 1602 to 1674nm. The emission spectrum is smooth and flat. The ripple of the spectrum is less than 0.3dB at any wavelength from 1550 to 1700nm. An output power of 4.3mW is obtained at a 200mA injection current under continuous-wave operation at room temperature. This device is suitable for the applications of light sources for gas detectors and L-band optical fiber communications.展开更多
In this paper, a novel admission scheme is proposed which provides high degrees of quality of service (QoS) guarantees for multimedia traffic carried in mobile networks. The proposed scheme combines the admission cont...In this paper, a novel admission scheme is proposed which provides high degrees of quality of service (QoS) guarantees for multimedia traffic carried in mobile networks. The proposed scheme combines the admission control and bandwidth reservation to guarantee QoS requirements. It considers both local information and remote information to determine whether to accept or reject a connection. In order to embody the characteristics of the algorithms proposed in the article, two traditional algorithms of admission control are used for comparison. In the end of the paper the simulation analyses are given and the results show that the proposed algorithm can adjust the bandwidth according to the current status of networks and decrease the probability of connections forcibly dropped. The most important thing is that the algorithm is based on the multimedia communications and can guarantee the QoS of real time connections through decreasing the bandwidth of non real time connections.展开更多
Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship betw...Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.展开更多
基金partially supported by the US Department of Energy
文摘A high-throughput multi-plume pulsed-laser deposition (MPPLD) system has been demonstrated and compared to previous techniques. Whereas most combinatorial pulsedlaser deposition (PLD) systems have focused on achieving thickness uniformity using sequential multilayer deposition and masking followed by post-deposition annealing, MPPLD directly deposits a compositionally varied library of compounds using the directionality of PLD plumes and the resulting spatial variations of deposition rate. This system is more suitable for high-throughput compound thin-film fabrication.
基金the financial support by National Natural Science Foundation of China under contract No.61905031,61905073National Key R&D Program of China under contract No.2020YFC1522900Natural Science Foundation of Chongqing under contract No.CSTB2023NSCQMSX0992。
文摘Benefiting from the abrupt phase changes within subwavelength thicknesses,metasurfaces have been widely applied for lightweight and compact optical systems.Simultaneous broadband and high-efficiency characteristics are highly attractive for the practical implementation of metasurfaces.However,current metasurface devices mostly adopt discrete micro/nano structures,which rarely realize both merits simultaneously.In this paper,dielectric metasurfaces composed of quasi-continuous nanostrips are proposed to overcome this limitation.Via quasi-continuous nanostrips metasurface,a normal focusing metalens and a superoscillatory lens overcoming the diffraction limit are designed and experimentally demonstrated.The quasi-continuous metadevices can operate in a broadband wavelength ranging from 450 nm to 1000nm and keep a high power efficiency.The average efficiency of the fabricated metalens reaches 54.24%,showing a significant improvement compared to the previously reported metalenses with the same thickness.The proposed methodology can be easily extended to design other metadevices with the advantages of broadband and high-efficiency in practical optical systems.
基金This research was financially supported by the Chinese National Key Foundation Research Subject (No.G2000026305), National Natural Science Foundation of China (No.50276060), and the director foundation of Institute of Engineering Thermophysics, Chinese A
文摘An experimental study of bioheat transfer characteristics induced bypulsed-laser irradiation was presented. The heat transfer characteristics of bio-materials, and theinfluences of pulse duration, power density, species of bio-materials, thickness and initialmoisture content of bio-materials on heat transfer were studied in details. The experimental resultsindicate that the penetration and absorption of laser in bio-materials are considerable, the heattransfer inside the bio-materials should include the effects of volumetric absorption, pulseduration, power density, bio-materials thickness, and material species have a significant influenceon the temperature variation.
基金supported by National Natural Science Foundation of China(No.62001061)。
文摘In this paper,a simple adaptive power dividing function for the design of a dual-input Doherty power amplifier(DPA)is presented.In the presented approaches,the signal separation function(SSF)at different frequency points can be characterized by a polynomial.And in the practical test,the coefficients of SSF can be determined by measuring a small number of data points of input power.Same as other dualinput DPAs,the proposed approach can also achieve high output power and back-off efficiency in a broadband operation band by adjusting the power distribution ratio flexibly.Finally,a 1.5-2.5 GHz highefficiency dual-input Doherty power amplifier is implemented according to this approach.The test results show that the peak power is 48.6-49.7d Bm,and the 6-d B back-off efficiency is 51.0-67.0%,and the saturation efficiency is 52.4-74.6%.The digital predistortion correction is carried out at the frequency points of 1.8/2.1GHz,and the adjacent channel power ratio is lower than-54.5d Bc.Simulation and experiment results can verify the effectiveness and correctness of the proposed method.
基金supported by the National Natural Science Foundation of China(52231007,12327804,T2321003,22088101)this work was supported in part by the National Key Research Program of China under Grant 2021YFA1200600,and Shanghai Sailing Program(22YF1447800).
文摘Broadband electromagnetic(EM)wave absorption materials play an important role in military stealth and health protection.Herein,metal–organic frameworks(MOFs)-derived magnetic-carbon CoNiM@C(M=Cu,Zn,Fe,Mn)microspheres are fabricated,which exhibit flower-like nano–microstructure with tunable EM response capacity.Based on the MOFs-derived CoNi@C microsphere,the adjacent third element is introduced into magnetic CoNi alloy to enhance EM wave absorption performance.In term of broadband absorption,the order of efficient absorption bandwidth(EAB)value is Mn>Fe=Zn>Cu in the CoNiM@C microspheres.Therefore,MOFs-derived flower-like CoNiMn@C microspheres hold outstanding broadband absorption and the EAB can reach up to 5.8 GHz(covering 12.2–18 GHz at 2.0 mm thickness).Besides,off-axis electron holography and computational simulations are applied to elucidate the inherent dielectric dissipation and magnetic loss.Rich heterointerfaces in CoNiMn@C promote the aggregation of the negative/positive charges at the contacting region,forming interfacial polarization.The graphitized carbon layer catalyzed by the magnetic CoNiMn core offered the electron mobility path,boosting the conductive loss.Equally importantly,magnetic coupling is observed in the CoNiMn@C to strengthen the magnetic responding behaviors.This study provides a new guide to build broadband EM absorption by regulating the ternary magnetic alloy.
基金Project supported by the China Post-doctoral Science Foundation(Grant No.2020M671834)the Anhui Province Post-doctoral Science Foundation,China(Grant No.2020A397).
文摘A flexible extra broadband metamaterial absorber(MMA)stacked with five layers working at 2 GHz–40 GHz is investigated.Each layer is composed of polyvinyl chloride(PVC),polyimide(PI),and a frequency selective surface(FSS),which is printed on PI using conductive ink.To investigate this absorber,both one-dimensional analogous circuit analysis and three-dimensional full-wave simulation based on a physical model are provided.Various crucial electromagnetic properties,such as absorption,effective impedance,complex permittivity and permeability,electric current distribution and magnetic field distribution at resonant peak points,are studied in detail.Analysis shows that the working frequency of this absorber covers entire S,C,X,Ku,K and Ka bands with a minimum thickness of 0.098λ_(max)(λ_(max) is the maximum wavelength in the absorption band),and the fractional bandwidth(FBW)reaches 181.1%.Moreover,the reflection coefficient is less than-10 dB at 1.998 GHz–40.056 GHz at normal incidence,and the absorptivity of the plane wave is greater than 80%when the incident angle is smaller than 50°.Furthermore,the proposed absorber is experimentally validated,and the experimental results show good agreement with the simulation results,which demonstrates the potential applicability of this absorber at 2 GHz–40 GHz.
基金supported by the National Natural Science Foundation of China[Grant No.61771187]the Natural Science Foundation of Hubei Province[Grant No.2016CFB396]+1 种基金the Hubei Provincial Technology Innovation Special Major Project[Grant No.2019AAA018]the Major Project of Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy[HBSKFZD2015002].
文摘With the boom of the communication systems on some independent platforms(such as satellites,space stations,airplanes,and vessels),co-site interference is becoming prominent.The adaptive interference cancellation method has been adopted to solve the co-site interference problem.But the broadband interference cancellation performance of traditional Adaptive Co-site Interference Cancellation System(ACICS)with large delay mismatching and antenna sway is relatively poor.This study put forward an Adaptive Co-site Broadband Interference Cancellation System With Two Auxiliary Channels(ACBICS-2A).The system model was established,and the steady state weights and Interference Cancellation Ratio(ICR)were deduced by solving a time-varying differential equation.The relationship of ICR,system gain,modulation factor,interference signal bandwidth and delay mismatching degree was acquired through an in-depth analysis.Compared with traditional adaptive interference cancellation system,the proposed ACBICS-2A can improve broadband interference cancellation ability remarkably with large delay mismatching and antenna sway for the effect of auxiliary channel.The maximum improved ICR is more than 25 dB.Finally,the theoretical and simulation results were verified by experiments.
基金National Natural Science Foundation of China(Grant Nos.51821003,52175524,61704158)the Natural Science Foundation of Shanxi Province(Grant No.202103021224206)Shanxi"1331 Project"Key Subjects Construction to provide fund for conducting experiments。
文摘In order to suppress the low-frequency ultrasound vibration in the broadband range of 20 k Hz—100 k Hz,this paper proposes and discusses an acoustic metamaterial with low-frequency ultrasound vibration attenuation properties,which is configured by hybrid arc and sharp-angle convergent star-shaped lattices.The effect of the dispersion relation and the bandgap characteristic for the scatterers in star-shaped are simulated and analyzed.The target bandgap width is extended by optimizing the geometry parameters of arc and sharp-angle convergent lattices.The proposed metamaterial configured by optimized hybrid lattices exhibits remarkable broad bandgap characteristics by bandgap complementarity,and the simulation results verify a 99%vibration attenuation amplitude can be obtained in the frequency of20 k Hz—100 k Hz.After the fabrication of the proposed hybrid configurational star-shaped metamaterial by 3D printing technique,the transmission loss experiments are performed,and the experimental results indicate that the fabricated metamaterial has the characteristics of broadband vibration attenuation and an amplitude greater than 85%attenuation for the target frequency.These results demonstrate that the hybrid configurational star-shaped metamaterials can effectively widen the bandgap and realize high efficiency attenuation,which has capability for the vibration attenuation in the application of highprecise equipment.
基金supported by grants from the National Key Research and Development Program of China(2022YFB3806000)the National Natural Science Foundation of China(52325208 and 11974203)the Beijing Municipal Science and Technology Project(Z191100004819002).
文摘Metalenses with achromatic performance offer a new opportunity for high-quality imaging with an ultracompact configuration;however,they suffer from complex fabrication processes and low focusing efficiency.In this study,we propose an efficient design method for achromatic microlenses on a wavelength scale using materials with low dispersion,an adequately designed convex surface,and a thickness profile distribution.By taking into account the absolute chromatic aberration,relative focal length shift(FLS),and numerical aperture(NA),microlens with a certain focal length can be realized through our realized map of geometric features.Accordingly,the designed achromatic microlenses with low-dispersion fused silica were fabricated using a focused ion beam,and precise surface profiles were obtained.The fabricated microlenses exhibited a high average focusing efficiency of 65%at visible wavelengths of 410-680 nm and excellent achromatic capability via white light imaging.Moreover,the design exhibited the advantages of being polarization-insensitive and near-diffraction-limited.These results demonstrate the effectiveness of our proposed achromatic microlens design approach,which expands the prospects of miniaturized optics such as virtual and augmented reality,ultracompact microscopes,and biological endoscopy.
基金supported by the National Natural Science Foundation of China[Grant No.61771187]the Natural Science Foundation of Hubei Province[Grant No.2016CFB396]+1 种基金the Hubei Provincial Technology Innovation Special Major Project[Grant No.2019AAA018]the Major Project of Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy[HBSKFZD2015002]。
文摘With the development of wireless communication technology,an urgent problem to be solved is co-site broadband interference on independent communication platforms such as satellites,space stations,aircrafts and ships.Also,the problem of strong selfinterference rejection should be solved in the co-time co-frequency full duplex mode which realizes spectrum multiplication in 5G communication technology.In the research of such interference rejection,interference cancellation technology has been applied.In order to reject multipath interference,multitap double LMS(Least Mean Square)loop interference cancellation system is often used for cancelling RF(Radio Frequency)domain interference cancelling.However,more taps will lead to a more complex structure of the cancellation system.A novel tap single LMS loop adaptive interference cancellation system was proposed to improve the system compactness and reduce the cost.In addition,a mathematical model was built for the proposed cancellation system,the correlation function of CP2FSK(Continuous Phase Binary Frequency Shift Keying)signal was derived,and the quantitative relationship was established between the correlation function and the interference signal bandwidth and tap delay differential.The steadystate weights and the expression of the average interference cancellation ratio(ICR)were deduced in the scenes of LOS(Line of Sight)interference with antenna swaying on an independent communication platform and indoor multipath interference.The quantitative relationship was deeply analyzed between the interference cancellation performance and the parameters such as antenna swing,LMS loop gain,and interference signal bandwidth,which was verified by simulation experiment.And the performance of the proposed interference cancellation system was compared with that of the traditional double LMS loop cancellation system.The results showed that the compact single LMS loop cancellation system can achieve an average interference rejection capability comparable to the double LMS loop cancellation system.
基金Project supported by the National Natural Science Foundation of China (Nos. U2141244, 11932011,12393781, 12121002, and 12202267)supported by the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(No.SL2021ZD104)+4 种基金the Science and Technology Cooperation Project of Shanghai Jiao Tong University&Inner Mongolia Autonomous Region-Action Plan of Shanghai Jiao Tong University for“Science and Technology Prosperity”(No.2022XYJG0001-01-08)the Industryuniversity-research Cooperation Fund of Shanghai Academy of Spaceflight Technology(No.USCAST2021-11)Shanghai Pujiang Program(No.22PJ1405300)Young Talent Reservoir of CSTAM(No.CSTAM2022-XSC-QN1)the Starting Grant of Shanghai Jiao Tong University(No.WH220402014).
文摘Broadband vibration attenuation is a challenging task in engineering since it is difficult to achieve low-frequency and broadband vibration control simultaneously.To solve this problem,this paper designs a piezoelectric meta-beam with unidirectional electric circuits,exhibiting promising broadband attenuation capabilities.An analytical model in a closed form for achieving the solution of unidirectional vibration transmission of the designed meta-beam is developed based on the state-space transfer function method.The method can analyze the forward and backward vibration transmission of the piezoelectric meta-beam in a unified manner,providing reliable dynamics solutions of the beam.The analytical results indicate that the meta-beam effectively reduces the unidirectional vibration across a broad low-frequency range,which is also verified by the solutions obtained from finite element analyses.The designed meta-beam and the proposed analytical method facilitate a comprehensive investigation into the distinctive unidirectional transmission behavior and superb broadband vibration attenuation performance.
基金supported by the National Natural Science Foundation of China(Grant No.62201352)。
文摘Multifunctional metastructure integrated broadband microwave absorption and effective mechanical resistance has attracted much attention.However,multifunctional performance is limited by the lack of theoretical approaches to integrated design.Herein,a multi-layer impedance gradient honeycomb(MIGH)was designed through theoretical analysis and simulation calculation,and fabricated using 3D printing technique.A theoretical calculation strategy for impedance gradient structure was established based on the electromagnetic parameter equivalent method and the multi-layer finite iterative method.The impedance of MIGH was analyzed by the theoretical calculation strategy to resolve the broadband absorption.Intrinsic loss mechanism of matrix materials and distributions of electric fields,magnetic fields and power loss were analyzed to investigate the absorption mechanism.Experimental results indicated that a 15 mm thick designed metastructure can achieve the absorption more than 88.9%in the frequency range of 2-18 GHz.Moreover,equivalent mechanical parameters of MIGH was calculated by integral method according to the Y-shaped model.Finite Element analysis of stress distributions were carried out to predict the deformation behavior.Mechanical tests demonstrate that MIGH achieved the compression modulus of 22.89 MPa and flexure modulus of 17.05 MPa.The integration of broadband electromagnetic absorption and effective mechanical resistance was achieved by the proposed design principle and fabrication methodology.
基金Project supported by the National Key Research and Development Program of China(Grant No.2019YFA0705000)Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301500)+1 种基金Leading-edge Technology Program of Jiangsu Natural Science Foundation(Grant No.BK20192001)the National Natural Science Foundation of China(Grant Nos.51890861 and 11974178).
文摘Broadband photon pairs are highly desirable for quantum metrology,quantum sensing,and quantum communication.Such sources are usually designed through type-0 phase-matching spontaneous parametric down-conversion(SPDC)that makes the photon pairs hard to separate in the frequency-degenerate case and thus limits their applications.In this paper,we design a broadband frequency-degenerate telecom-band photon pair source via the type-II SPDC in a dispersion-engineered thin-film lithium niobate waveguide,where the polarization modes of photon pairs are orthogonal and thus are easily separated deterministically.With a 5-mm-long waveguide,our design can achieve a bandwidth of 5.56 THz(44.8 nm),which is 8.6 times larger than that of the bulk lithium niobate,and the central wavelength can be flexibly adjusted.Our design is a promising approach towards high-quality integrated photon sources and may have wide applications in photonic quantum technologies.
基金The 2024 University-level Higher Education Teaching Reform Project of Guangzhou Xinhua University,“Teaching Reform and Practice Based on OBE Concept”:A Case Study of“University Physics Experiment”(Project No.2024J044)。
文摘Welding voltage and current in arc signals are directly related to arc stability and welding quality.Process experiments with different parameters were organized according to the orthogonal experimental design method by constructing an aluminum alloy double-pulse metal inert gas(MIG)welding arc electric signal test platform.The data acquisition system of the aluminum alloy MIG welding process was established to obtain real-time arc signal information reflecting the welding process.The aluminum alloy’s collected double-pulse arc current signals are decomposed adaptively by broadband mode decomposition(BMD).The direct current(DC)signal,pulse signal,distortion signal,ripple signal,and noise signal are separated and extracted,and the composite multiscale fuzzy entropy(CMFE)is calculated for the component set of the electrical signal.The experimental results show that the current waveform obtained by the double-pulse MIG welding current signal is consistent with the corresponding weld forming diagram.Simultaneously,the composite multiscale fuzzy entropy is calculated for the arc characteristic parameters.The rationality of matching process parameters and arc stability of aluminum alloy’s double-pulse MIG welding were evaluated.
文摘A four-stage monolithic microwave integrated circuits (MMIC) low noise amplifier (LNA) operating from 23 to 36GHz is reported using commercially available 0.15μm PHEMT technology. The LNA is self-biased. To achieve a low noise characteristic, careful optimizations of gate width are performed to reduce gate resistance. Absorption circuits and an elaborate bias structure with a resistor-capacitor network are employed to improve stability. Multiple resonance points and negative feedback technologies are used to widen the bandwidth. Measurements show a noise figure (NF) of less than 2.0dB,and the lowest NF is only 1.6dB at a frequency of 31GHz. In the whole operation band,the LNA has a gain of higher than 26dB,and an input return loss and output return loss of more than 11 and 13dB,respectively. The output power at ldB compression gain of 36GHz is about 14dBm. The chip area is 2.4mm ×1mm.
文摘A broadband microstrip patch antenna was analyzed and designed.Full wave analysis method(FWAM) was employed to show that a stacked microstrip dual patch antenna(SMDPA) might have a much wider bandwidth than that of the ordinanry uni patch one.By means of discrete complex image theory(DCIT),the Sommerfeld integrals (SI) involved were accurately calculated at a speed several hundred times faster than numerical integration method(NIM).The feeding structure of the SMDPA was then improved and the bandwidth was extended to about 22% or more for voltage standing wave ratio (VSWR)s≤2 Finally,a matching network was constructed to obtain a bandwidth of about 25% for s≤1.5.
文摘We report here the observation result of joint observation of long period tremor signals with broadband seismome-ter,tiltmeter and gravimeter at the HUST(Huazhong University of Science and Technology)station.The observed data were compared and analyzed.Since 2005,the several tens of abnormal tremor signals which are weak,com-plex and duration of 2 to 3 days have been synchronously recorded by the different instruments.The tremor signals have the periodic domain in the range of 3 to 5 minutes,20 to 30 minutes and even more than 1 hour.The observa-tion shows such tremors are a physical existence.The analysis indicates that a part of the tremors caused by the typhoon from the western Pacific Ocean.These tremors have a close relationship with wind velocity of typhoon and distance between the typhoon center and the station.Except these,the cause of others is still unclear.
文摘A novel unselective regrowth buried heterostructure long-wavelength superluminescent diode (SLD) with a graded composition bulk InGaAs active region is developed by metalorganic vapor phase epitaxy (MOVPE). At a 150mA injection current, the full width at half maximum of the emission spectrum of the SLD is about 72nm, ranging from 1602 to 1674nm. The emission spectrum is smooth and flat. The ripple of the spectrum is less than 0.3dB at any wavelength from 1550 to 1700nm. An output power of 4.3mW is obtained at a 200mA injection current under continuous-wave operation at room temperature. This device is suitable for the applications of light sources for gas detectors and L-band optical fiber communications.
文摘In this paper, a novel admission scheme is proposed which provides high degrees of quality of service (QoS) guarantees for multimedia traffic carried in mobile networks. The proposed scheme combines the admission control and bandwidth reservation to guarantee QoS requirements. It considers both local information and remote information to determine whether to accept or reject a connection. In order to embody the characteristics of the algorithms proposed in the article, two traditional algorithms of admission control are used for comparison. In the end of the paper the simulation analyses are given and the results show that the proposed algorithm can adjust the bandwidth according to the current status of networks and decrease the probability of connections forcibly dropped. The most important thing is that the algorithm is based on the multimedia communications and can guarantee the QoS of real time connections through decreasing the bandwidth of non real time connections.
基金supported by the National Natural Science Foundation of China(22265021)the Aeronautical Science Foundation of China(2020Z056056003)Jiangxi Provincial Natural Science Foundation(20232BAB212004).
文摘Atomic-scale doping strategies and structure design play pivotal roles in tailoring the electronic structure and physicochemical property of electromagnetic wave absorption(EMWA)materials.However,the relationship between configuration and electromagnetic(EM)loss mechanism has remained elusive.Herein,drawing inspiration from the DNA transcription process,we report the successful synthesis of novel in situ Mn/N co-doped helical carbon nanotubes with ultrabroad EMWA capability.Theoretical calculation and EM simulation confirm that the orbital coupling and spin polarization of the Mn–N4–C configuration,along with cross polarization generated by the helical structure,endow the helical converters with enhanced EM loss.As a result,HMC-8 demonstrates outstanding EMWA performance,achieving a minimum reflection loss of−63.13 dB at an ultralow thickness of 1.29 mm.Through precise tuning of the graphite domain size,HMC-7 achieves an effective absorption bandwidth(EAB)of 6.08 GHz at 2.02 mm thickness.Furthermore,constructing macroscale gradient metamaterials enables an ultrabroadband EAB of 12.16 GHz at a thickness of only 5.00 mm,with the maximum radar cross section reduction value reaching 36.4 dB m2.This innovative approach not only advances the understanding of metal–nonmetal co-doping but also realizes broadband EMWA,thus contributing to the development of EMWA mechanisms and applications.