A broadband external cavity tunable laser is realized by using a broad-emitting spectral InAs/GaAs quantum dot (QD) gain device. A tuning range of 69 nm with a central wavelength of 1056 nm, is achieved at a bias of...A broadband external cavity tunable laser is realized by using a broad-emitting spectral InAs/GaAs quantum dot (QD) gain device. A tuning range of 69 nm with a central wavelength of 1056 nm, is achieved at a bias of 1.25 kA/cm^2only by utilizing the light emission from the ground state of QDs. This large tunable range only covers the QD ground-state emission and is related to the inhomogeneous size distribution of QDs. No excited state contributes to the tuning bandwidth. The application of the QD gain device to the external cavity tunable laser shows its immense potential in broadening the tuning bandwidth. By the external cavity feedback, the threshold current densitycan be reduced remarkably compared with the free-running QD gain device.展开更多
A broadband tunable grating-coupled external cavity laser is realized by employing a self-assembled InAs/GaAs quantum-dot (QD) superluminescent diode (SLD) as the gain device. The SLD device is processed with a be...A broadband tunable grating-coupled external cavity laser is realized by employing a self-assembled InAs/GaAs quantum-dot (QD) superluminescent diode (SLD) as the gain device. The SLD device is processed with a bent-waveguide structure and facet antireflection (AR) coating. Tuning bandwidths of 106 nm and 117 nm are achieved under a-A and 3.5-A injection currents, respectively. The large tuning range originates essentially from the broad gain spectrum of self-assembled QDs. The bent waveguide structure combined with the facet AR coating plays a role in suppressing the inner-cavity lasing under a large injection current.展开更多
We have reported the high-Q whispering gallery modes(WGMs) in a polydimethylsiloxane(PDMS) optical microresonators with broad tuning range. The PDMS microresonators are fabricated at the center of two collimating fibe...We have reported the high-Q whispering gallery modes(WGMs) in a polydimethylsiloxane(PDMS) optical microresonators with broad tuning range. The PDMS microresonators are fabricated at the center of two collimating fiber tips, which can be controlled by the piezoelectric stage. Through stretching the fiber stem, the tuning range of WGMs are demonstrated more than 50 nm.Further investigations demonstrated that the WGM shift has a high force sensitivity(~ 19.7 pm/μN) of the gravitation when the microcavity is stretched by a weight. The theoretical analysis reveals that the high force sensitivity of polymer microresonator can be used for the weak force or height measurement.展开更多
The laser performance of a new Yb:germanophosphate(Yb:GP) glass is investigated. A maximum output power of 826 m W at 1063 nm is achieved with direct diode pumping at 976 nm. The wavelength is tuned from 1034.47 t...The laser performance of a new Yb:germanophosphate(Yb:GP) glass is investigated. A maximum output power of 826 m W at 1063 nm is achieved with direct diode pumping at 976 nm. The wavelength is tuned from 1034.47 to 1070.83 nm, corresponding to a tuning range of 36.36 nm. Thermal lens effects are investigated to optimize the optical cavity.展开更多
Temporal cavity solitons(CSs) have excellent properties that can sustain their shape in a temporal profile and with a broadband, smooth-frequency spectrum. We propose a method for controllable frequency line spacing...Temporal cavity solitons(CSs) have excellent properties that can sustain their shape in a temporal profile and with a broadband, smooth-frequency spectrum. We propose a method for controllable frequency line spacing soliton formation in a microresonator using two continuous-wave(CW) pumps with multi-free-spectral-range(FSR) spacing. The method we propose has better control over the amount and location of the solitons traveling in the cavity compared to the tuning pump method. We also find that by introducing a second pump with frequency N FSR from the first pump, solitons with N FSR comb spacing can be generated.展开更多
基金Project supported by the National Basic Research Program of China (Grant No. 2006CB604904)the National Natural Science Foundation of China (Grant Nos. 60976057, 60876086 and 60776037)
文摘A broadband external cavity tunable laser is realized by using a broad-emitting spectral InAs/GaAs quantum dot (QD) gain device. A tuning range of 69 nm with a central wavelength of 1056 nm, is achieved at a bias of 1.25 kA/cm^2only by utilizing the light emission from the ground state of QDs. This large tunable range only covers the QD ground-state emission and is related to the inhomogeneous size distribution of QDs. No excited state contributes to the tuning bandwidth. The application of the QD gain device to the external cavity tunable laser shows its immense potential in broadening the tuning bandwidth. By the external cavity feedback, the threshold current densitycan be reduced remarkably compared with the free-running QD gain device.
基金Project supported by the National Key Basic Research and Development Program of China (Grant No. 2006CB604904)the National Natural Science Foundation of China (Grant Nos. 60976057, 60876086, 60776037, and 10775106)
文摘A broadband tunable grating-coupled external cavity laser is realized by employing a self-assembled InAs/GaAs quantum-dot (QD) superluminescent diode (SLD) as the gain device. The SLD device is processed with a bent-waveguide structure and facet antireflection (AR) coating. Tuning bandwidths of 106 nm and 117 nm are achieved under a-A and 3.5-A injection currents, respectively. The large tuning range originates essentially from the broad gain spectrum of self-assembled QDs. The bent waveguide structure combined with the facet AR coating plays a role in suppressing the inner-cavity lasing under a large injection current.
基金supported by the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB01030200)the National Basic Research Program of China(Grant Nos.2011CB921200 and2011CBA00200)+2 种基金the National Natural Science Foundation of China(Grant No.61308079)Anhui Provincial Natural Science Foundation(Grant No1508085QA08)the Fundamental Research Funds for the Central Universities
文摘We have reported the high-Q whispering gallery modes(WGMs) in a polydimethylsiloxane(PDMS) optical microresonators with broad tuning range. The PDMS microresonators are fabricated at the center of two collimating fiber tips, which can be controlled by the piezoelectric stage. Through stretching the fiber stem, the tuning range of WGMs are demonstrated more than 50 nm.Further investigations demonstrated that the WGM shift has a high force sensitivity(~ 19.7 pm/μN) of the gravitation when the microcavity is stretched by a weight. The theoretical analysis reveals that the high force sensitivity of polymer microresonator can be used for the weak force or height measurement.
基金supported by the National Science Foundation of China(NSFC)under Grant Nos.11504394,61521093,and 61378030
文摘The laser performance of a new Yb:germanophosphate(Yb:GP) glass is investigated. A maximum output power of 826 m W at 1063 nm is achieved with direct diode pumping at 976 nm. The wavelength is tuned from 1034.47 to 1070.83 nm, corresponding to a tuning range of 36.36 nm. Thermal lens effects are investigated to optimize the optical cavity.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61475099, 61102053, 61378012, and 11574092)the Program of State Key Laboratory of Quantum Optics and Quantum Optics Devices (No. KF201405)the Open Fund of IPOC (BUPT) (No: IPOC2015B004)
文摘Temporal cavity solitons(CSs) have excellent properties that can sustain their shape in a temporal profile and with a broadband, smooth-frequency spectrum. We propose a method for controllable frequency line spacing soliton formation in a microresonator using two continuous-wave(CW) pumps with multi-free-spectral-range(FSR) spacing. The method we propose has better control over the amount and location of the solitons traveling in the cavity compared to the tuning pump method. We also find that by introducing a second pump with frequency N FSR from the first pump, solitons with N FSR comb spacing can be generated.