In the present work we study the Hamiltonian, path integral and BRST formulations of the Chern-Simons-Higgs theory in two-space one-time dimensions, in the so-called broken symmetry phase of the Higgs potential (where...In the present work we study the Hamiltonian, path integral and BRST formulations of the Chern-Simons-Higgs theory in two-space one-time dimensions, in the so-called broken symmetry phase of the Higgs potential (where the phase φ(xμ) of the complex matter field Φ(xμ) carries the charge degree of freedom of the complex matter field and is akin to the Goldstone boson) on the light-front (i.e., on the hyperplanes defined by the fixed light-cone time). The theory is seen to possess a set of first-class constraints and the local vector gauge symmetry. The theory being gauge-invariant is quantized under appropriate gauge-fixing conditions. The explicit Hamiltonian and path integral quantization is achieved under the above light-cone gauges. The Heisenberg equations of motion of the system are derived for the physical degrees of freedom of the system. Finally the BRST quantization of the system is achieved under appropriate BRST gauge-fixing, where the BRST symmetry is maintained even under the BRST light-cone gauge-fixing.展开更多
In this paper, the morphological transition from dendrite to symmetry-broken dendrite is investigated in the directional ;olidification of non-axially-oriented crystals using a quantitative phase-field model. The effe...In this paper, the morphological transition from dendrite to symmetry-broken dendrite is investigated in the directional ;olidification of non-axially-oriented crystals using a quantitative phase-field model. The effects of pulling velocity and zrystal orientation on the morphological transition are investigated. The results indicate the orientation dependence of the ;ymmetry-broken double dendrites. A dendrite to symmetry-broken dendrite transition is found by varying the pulling telocity at different crystal orientations and the symmetry-broken multiple dendrites emerge as a transition state for the ;ymmetry-broken double dendrites. The state region during the transition can be well characterized through the variations ff the characteristic angle and the average primary dendritic spacing.展开更多
文摘In the present work we study the Hamiltonian, path integral and BRST formulations of the Chern-Simons-Higgs theory in two-space one-time dimensions, in the so-called broken symmetry phase of the Higgs potential (where the phase φ(xμ) of the complex matter field Φ(xμ) carries the charge degree of freedom of the complex matter field and is akin to the Goldstone boson) on the light-front (i.e., on the hyperplanes defined by the fixed light-cone time). The theory is seen to possess a set of first-class constraints and the local vector gauge symmetry. The theory being gauge-invariant is quantized under appropriate gauge-fixing conditions. The explicit Hamiltonian and path integral quantization is achieved under the above light-cone gauges. The Heisenberg equations of motion of the system are derived for the physical degrees of freedom of the system. Finally the BRST quantization of the system is achieved under appropriate BRST gauge-fixing, where the BRST symmetry is maintained even under the BRST light-cone gauge-fixing.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61078057 and 51172183)the National Natural Science Foundation of Shaanxi Province,China(Grant No.2012JQ8013)+1 种基金the Aviation Foundation of China(Grant No.2011ZF53065)the NPU Foundation for Fundamental Research,China(Grant Nos.NPU-FFR-JC20110273 and JC201155)
文摘In this paper, the morphological transition from dendrite to symmetry-broken dendrite is investigated in the directional ;olidification of non-axially-oriented crystals using a quantitative phase-field model. The effects of pulling velocity and zrystal orientation on the morphological transition are investigated. The results indicate the orientation dependence of the ;ymmetry-broken double dendrites. A dendrite to symmetry-broken dendrite transition is found by varying the pulling telocity at different crystal orientations and the symmetry-broken multiple dendrites emerge as a transition state for the ;ymmetry-broken double dendrites. The state region during the transition can be well characterized through the variations ff the characteristic angle and the average primary dendritic spacing.