As an organophosphorus compound that frequently detected in water samples,triphenyl phosphate(TPhP)has been showed to have multiple toxicological effects on aquatic species.However,no attention has been paid to its po...As an organophosphorus compound that frequently detected in water samples,triphenyl phosphate(TPhP)has been showed to have multiple toxicological effects on aquatic species.However,no attention has been paid to its potential impact on non-model amphibian species.Here,tadpoles of the Zhenhai brown frog(Rana zhenhaiensis)were exposed to different concentrations of TPh P(0,0.02 and 0.1 mg/L)throughout the developmental period to assess physiological and meta bolic impacts of TPh P exposure on amphibian larvae.After 30-day TPh P exposure,the developmental stage of tadpoles from the high-concentration treatment appeared to be more advanced than that from the other two treatments,but other measured traits(including body size,tail length and liver weight)did not differ among treatments.Metabolite profiles in tadpole livers based on liquid chromatographymass spectrometry(LC-MS)revealed a distinct metabolic disorder in exposed animals.Specifically,significant changes in various hepatic amino acids(such as glutamine,glutamate,valine and leucine)were observed.Overall,our results indicated that chronic TPhP exposure potentially caused developmental and hepatic physiological changes in R.zhenhaiensis tadpoles,although its impact on tadpole growth appeared to be minor.展开更多
基金a grant from the Natural Science Foundation of Zhejiang Province(LY15C030006)。
文摘As an organophosphorus compound that frequently detected in water samples,triphenyl phosphate(TPhP)has been showed to have multiple toxicological effects on aquatic species.However,no attention has been paid to its potential impact on non-model amphibian species.Here,tadpoles of the Zhenhai brown frog(Rana zhenhaiensis)were exposed to different concentrations of TPh P(0,0.02 and 0.1 mg/L)throughout the developmental period to assess physiological and meta bolic impacts of TPh P exposure on amphibian larvae.After 30-day TPh P exposure,the developmental stage of tadpoles from the high-concentration treatment appeared to be more advanced than that from the other two treatments,but other measured traits(including body size,tail length and liver weight)did not differ among treatments.Metabolite profiles in tadpole livers based on liquid chromatographymass spectrometry(LC-MS)revealed a distinct metabolic disorder in exposed animals.Specifically,significant changes in various hepatic amino acids(such as glutamine,glutamate,valine and leucine)were observed.Overall,our results indicated that chronic TPhP exposure potentially caused developmental and hepatic physiological changes in R.zhenhaiensis tadpoles,although its impact on tadpole growth appeared to be minor.
基金国家自然科学基金(No.30470252)East Asia and Pacific Summer Institutes providedto ZIF by the United States National Science Foundation中国科学院成都生物研究所知识创新工程领域前沿项目(CIB-2007-LYQY-Q02)共同资助~~