Accurate genomic information is essential for advancing genetic breeding research in specific rice varieties.This study presented a gapless genome assembly of the indica rice cultivar Zhonghui 8015(ZH8015)using Pac Bi...Accurate genomic information is essential for advancing genetic breeding research in specific rice varieties.This study presented a gapless genome assembly of the indica rice cultivar Zhonghui 8015(ZH8015)using Pac Bio HiFi,Hi-C,and ONT(Oxford Nanopore Technologies)ultra-long sequencing technologies,annotating 43037 gene structures.Subsequently,utilizing this genome along with transcriptomic and metabolomic techniques,we explored ZH8015's response to brown planthopper(BPH)infestation.Continuous transcriptomic sampling indicated significant changes in gene expression levels around 48 h after BPH feeding.Enrichment analysis revealed particularly significant alterations in genes related to reactive oxygen species scavenging and cell wall formation.Metabolomic results demonstrated marked increases in levels of several monosaccharides,which are components of the cell wall and dramatic changes in flavonoid contents.Omics association analysis identified differentially expressed genes associated with key metabolites,shedding light on ZH8015's response to BPH infestation.In summary,this study constructed a reliable genome sequence resource for ZH8015,and the preliminary multi-omics results will guide future insect-resistant breeding research.展开更多
Understanding the temperature affecting parasitic efficiency is critical to succeed in utilizing parasitoid as natural enemy in pest management. Laboratory studies were carried out to determine the effects of temperat...Understanding the temperature affecting parasitic efficiency is critical to succeed in utilizing parasitoid as natural enemy in pest management. Laboratory studies were carried out to determine the effects of temperature on parasitoid preference of female Anagrus nilaparvatae Pang et Wang (Hymenoptera:Mymaridae) to the eggs of whitebacked planthopper (WBPH), Sogatella furcifera Horváth and brown planthopper (BPH), Nilaparvata lugens Stl to build a composite model describing changes in parasitic response along a temperature gradient (18, 22, 26, 30, 34°C). The results showed that attack responses of A. nilaparvatae on WBPH and BPH were the best described by a Type II functional response. The two parameters, attack rates (a) and handling times (Th), of A. nilaparvatae to both eggs were influenced by the temperature. The maximum attack rates to WBPH (1.235) and BPH (1.049) were at 26 and 34°C, respectively, and the shortest handling times to WBPH (0.063) and BPH (0.057) were at 30 and 26°C, respectively. However, the optimal temperature for parasitic efficiency of A. nilaparvatae to WBPH and BPH eggs was both at 26°C, which showed that the present microclimate temperature of the habitat in the paddyfield was beneficial to A. nilaparvatae and indicated that parasitic efficiency of A. nilaparvatae would be impaired by global warming.展开更多
To investigate the effect of temperature on the resistance characteristics of dce varieties with different resistance genes to brown planthopper (BPH), Nilaparvata lugens (Stal), the resistances of IR26 (Bphl) a...To investigate the effect of temperature on the resistance characteristics of dce varieties with different resistance genes to brown planthopper (BPH), Nilaparvata lugens (Stal), the resistances of IR26 (Bphl) and IR36 (bph2) to BPH population in Hangzhou, China were monitored in greenhouse during September in 2007 and 2008 by using the standard seedling screening techniques (SSST) developed by the International Rice Research Institute (IRRI). Furthermore, the changes in resistance of IR26 and IR36 to BPH, soluble sugar and oxalic acid contents in 25-day-old rice plants of susceptible variety TN1 and resistant varieties IR26 and IR36 were detected at five temperatures (22℃, 25℃, 28℃, 31℃ and 34℃). IR26 completely lost resistance both in greenhouse and at the five tested temperatures. IR36 still had moderate resistance at natural temperature, but its resistance decreased gradually when the temperature increased from 25℃ to 34℃, and fully lost its resistance at 31℃ and 34℃. The highest durable resistance of IR26 and IR36 were recorded at 25℃. The soluble sugar content in plants of the three tested rice varieties increased with temperature increase, and the oxalic acid content increased with the temperature increase at first, maximized at 25℃, and then declined. Two-way ANOVA indicated significant effects of temperature and rice variety on contents of soluble sugar and oxalic acid in rice plants展开更多
The brown planthopper,Nilaparata lugens(Stl)(BPH)is one of the most important insect pests of rice in China and other east-southern Asian countries.Untilization of rice resistance varieties is one of the most econnomi...The brown planthopper,Nilaparata lugens(Stl)(BPH)is one of the most important insect pests of rice in China and other east-southern Asian countries.Untilization of rice resistance varieties is one of the most econnomic and effective ways for展开更多
Based on the historical data over 15 years from fivecounties including Xiaoshan,Longyou,Pujiang,Wenling,and Huangyan,Zhejiang Province,a se-ries of forecasting models were established by stepwise regression.These mode...Based on the historical data over 15 years from fivecounties including Xiaoshan,Longyou,Pujiang,Wenling,and Huangyan,Zhejiang Province,a se-ries of forecasting models were established by stepwise regression.These models could be used to pre-dict the population size and the level of the main en-dangering generation of brown planthopper(BPH)on late-season rice.After eight years validation,73models were established from 469 ones as a series ofmodels used as long,medium,and short term fore-casting.展开更多
The effect of nitrogen content in rice plants on the tolerance of brown planthopper (BPH), Nilaparvata lugens Stal to high temperature, starvation and insecticide, was studied in the laboratory at International Rice R...The effect of nitrogen content in rice plants on the tolerance of brown planthopper (BPH), Nilaparvata lugens Stal to high temperature, starvation and insecticide, was studied in the laboratory at International Rice Research Institute (IRRI), Philippines. Survival of nymphs and adults, fecundity and egg hatchability were significantly increased by the increase of nitrogen content in host plants at 38℃. Moreover, the survival of nymphs,fecundity and egg hatchability were significantly higher in BPH populations on rice plants with a high nitrogen regimen than those on rice plants with a low nitrogen regimen.Meanwhile, the tolerance of female adults to starvation and nymphs to growth regulator buprofezin on rice plants with a high nitrogen regimen were slightly increased. This indicates that the tolerances of BPH to adverse environmental stresses were positively increased by the application of nitrogenous fertilizer. The outbreak potential of BPH induced by the excessive application of fertilizer in rice fields was also discussed.展开更多
The brown planthopper, Nilaparvata lugens is a pest of cultivated rice through- out Asia and is controlled using insecticides and/or resistant rice varieties. This species has developed resistance to many classes of i...The brown planthopper, Nilaparvata lugens is a pest of cultivated rice through- out Asia and is controlled using insecticides and/or resistant rice varieties. This species has developed resistance to many classes of insecticide and biotypes have developed that are vir- ulent against formerly resistant rice cultivars. Insects use a suite of detoxification enzymes, including cytochrome P450s, glutathione S-transferases and carboxyl/cholinesterases to defend themselves against plant secondary metabolites and pesticides. Pyrosequencing on the Roche 454-FLX platform was used to produce a substantial expressed sequence tag (EST) dataset to complement the existing Sanger sequenced ESTs in GenBank. A total of 78 959 reads were combined with the 37 392 publically available Sanger ESTs; these assembled into 8 911 contigs and 10 620 singletons. Analysis of the distribution of tenta- tive unique genes (TUGs) with the gene ontology for biological processes and molecular functions suggests that the 454 and Sanger EST assembly is broadly representative of the N. lugens transcriptome. The brown planthopper transcriptome was found to contain 31 TUGs encoding P450s, nine encoding glutathione S-transferases and 26 encoding car- boxyl/cholinesterases and many of these are putatively involved in the detoxification of xenobiotics. The Agilent eArray platform was used to construct an oligonucleotide mi- croarray populated with probes for ~ 19 000 unigene sequences, including all those known to encode detoxification enzymes. The genomic resources developed in this study will be useful to the community studying this crop pest and will help elucidate the molecular mechanism underlying insecticide resistance and planthopper adaptation to resistant rice cultivars.展开更多
Anagrus nilaparvatae is the dominant egg parasitoid of rice planthoppers and plays an important role in biological control. Symbiotic bacteria can significantly influence the development, survival, reproduction and po...Anagrus nilaparvatae is the dominant egg parasitoid of rice planthoppers and plays an important role in biological control. Symbiotic bacteria can significantly influence the development, survival, reproduction and population differentiation of their hosts. To study the influence of temperature on symbiotic bacterial composition in the successive generations of A. nilaparvatae, A. nilaparvatae were raised under different constant temperatures of 22 °C, 25 °C, 28 °C, 31 °C and 34 °C. Polymerase chain reaction-denaturing gradient gel electrophoresis was used to investigate the diversity of symbiotic bacteria. Our results revealed that the endophytic bacteria of A. nilaparvatae were Pantoea sp., Pseudomonas sp. and some uncultured bacteria. The bacterial community composition in A. nilaparvatae significantly varied among different temperatures and generations, which might be partially caused by temperature, feeding behavior and the physical changes of hosts. However, the analysis of wsp gene showed that the Wolbachia in A. nilaparvatae belonged to group A, sub-group Mors and sub-group Dro. Sub-group Mors was absolutely dominant, and this Wolbachia composition remained stable in different temperatures and generations, except for the 3rd generation under 34 °C during which sub-group Dro became the dominant Wolbachia. The above results suggest that the continuous high temperature of 34 °C can influence the Wolbachia community composition in A. nilaparvatae.展开更多
基金supported by the Chinese Academy of Agricultural Sciences Innovation Project(Grant No.CAASASTIP-2013CNRRI)Fundamental Research Funds for Central Public Welfare Research Institutes of Chinese Rice Research Institute(Grant No.CPSIBRF-CNRRI-202102)。
文摘Accurate genomic information is essential for advancing genetic breeding research in specific rice varieties.This study presented a gapless genome assembly of the indica rice cultivar Zhonghui 8015(ZH8015)using Pac Bio HiFi,Hi-C,and ONT(Oxford Nanopore Technologies)ultra-long sequencing technologies,annotating 43037 gene structures.Subsequently,utilizing this genome along with transcriptomic and metabolomic techniques,we explored ZH8015's response to brown planthopper(BPH)infestation.Continuous transcriptomic sampling indicated significant changes in gene expression levels around 48 h after BPH feeding.Enrichment analysis revealed particularly significant alterations in genes related to reactive oxygen species scavenging and cell wall formation.Metabolomic results demonstrated marked increases in levels of several monosaccharides,which are components of the cell wall and dramatic changes in flavonoid contents.Omics association analysis identified differentially expressed genes associated with key metabolites,shedding light on ZH8015's response to BPH infestation.In summary,this study constructed a reliable genome sequence resource for ZH8015,and the preliminary multi-omics results will guide future insect-resistant breeding research.
基金supported by the Special Fund for Agro-Scientific Research in the Public Interest, China (200903051 and 200803003)
文摘Understanding the temperature affecting parasitic efficiency is critical to succeed in utilizing parasitoid as natural enemy in pest management. Laboratory studies were carried out to determine the effects of temperature on parasitoid preference of female Anagrus nilaparvatae Pang et Wang (Hymenoptera:Mymaridae) to the eggs of whitebacked planthopper (WBPH), Sogatella furcifera Horváth and brown planthopper (BPH), Nilaparvata lugens Stl to build a composite model describing changes in parasitic response along a temperature gradient (18, 22, 26, 30, 34°C). The results showed that attack responses of A. nilaparvatae on WBPH and BPH were the best described by a Type II functional response. The two parameters, attack rates (a) and handling times (Th), of A. nilaparvatae to both eggs were influenced by the temperature. The maximum attack rates to WBPH (1.235) and BPH (1.049) were at 26 and 34°C, respectively, and the shortest handling times to WBPH (0.063) and BPH (0.057) were at 30 and 26°C, respectively. However, the optimal temperature for parasitic efficiency of A. nilaparvatae to WBPH and BPH eggs was both at 26°C, which showed that the present microclimate temperature of the habitat in the paddyfield was beneficial to A. nilaparvatae and indicated that parasitic efficiency of A. nilaparvatae would be impaired by global warming.
基金supported by the National Basic Research Program of China Grant No.2010CB126202the AgroIndustry R&D Special Fund of China Grant No.200803003the Zhejiang Provincial Natural Science Foundation of ChinaGrant No.Z3080437
文摘To investigate the effect of temperature on the resistance characteristics of dce varieties with different resistance genes to brown planthopper (BPH), Nilaparvata lugens (Stal), the resistances of IR26 (Bphl) and IR36 (bph2) to BPH population in Hangzhou, China were monitored in greenhouse during September in 2007 and 2008 by using the standard seedling screening techniques (SSST) developed by the International Rice Research Institute (IRRI). Furthermore, the changes in resistance of IR26 and IR36 to BPH, soluble sugar and oxalic acid contents in 25-day-old rice plants of susceptible variety TN1 and resistant varieties IR26 and IR36 were detected at five temperatures (22℃, 25℃, 28℃, 31℃ and 34℃). IR26 completely lost resistance both in greenhouse and at the five tested temperatures. IR36 still had moderate resistance at natural temperature, but its resistance decreased gradually when the temperature increased from 25℃ to 34℃, and fully lost its resistance at 31℃ and 34℃. The highest durable resistance of IR26 and IR36 were recorded at 25℃. The soluble sugar content in plants of the three tested rice varieties increased with temperature increase, and the oxalic acid content increased with the temperature increase at first, maximized at 25℃, and then declined. Two-way ANOVA indicated significant effects of temperature and rice variety on contents of soluble sugar and oxalic acid in rice plants
文摘The brown planthopper,Nilaparata lugens(Stl)(BPH)is one of the most important insect pests of rice in China and other east-southern Asian countries.Untilization of rice resistance varieties is one of the most econnomic and effective ways for
文摘Based on the historical data over 15 years from fivecounties including Xiaoshan,Longyou,Pujiang,Wenling,and Huangyan,Zhejiang Province,a se-ries of forecasting models were established by stepwise regression.These models could be used to pre-dict the population size and the level of the main en-dangering generation of brown planthopper(BPH)on late-season rice.After eight years validation,73models were established from 469 ones as a series ofmodels used as long,medium,and short term fore-casting.
文摘The effect of nitrogen content in rice plants on the tolerance of brown planthopper (BPH), Nilaparvata lugens Stal to high temperature, starvation and insecticide, was studied in the laboratory at International Rice Research Institute (IRRI), Philippines. Survival of nymphs and adults, fecundity and egg hatchability were significantly increased by the increase of nitrogen content in host plants at 38℃. Moreover, the survival of nymphs,fecundity and egg hatchability were significantly higher in BPH populations on rice plants with a high nitrogen regimen than those on rice plants with a low nitrogen regimen.Meanwhile, the tolerance of female adults to starvation and nymphs to growth regulator buprofezin on rice plants with a high nitrogen regimen were slightly increased. This indicates that the tolerances of BPH to adverse environmental stresses were positively increased by the application of nitrogenous fertilizer. The outbreak potential of BPH induced by the excessive application of fertilizer in rice fields was also discussed.
文摘The brown planthopper, Nilaparvata lugens is a pest of cultivated rice through- out Asia and is controlled using insecticides and/or resistant rice varieties. This species has developed resistance to many classes of insecticide and biotypes have developed that are vir- ulent against formerly resistant rice cultivars. Insects use a suite of detoxification enzymes, including cytochrome P450s, glutathione S-transferases and carboxyl/cholinesterases to defend themselves against plant secondary metabolites and pesticides. Pyrosequencing on the Roche 454-FLX platform was used to produce a substantial expressed sequence tag (EST) dataset to complement the existing Sanger sequenced ESTs in GenBank. A total of 78 959 reads were combined with the 37 392 publically available Sanger ESTs; these assembled into 8 911 contigs and 10 620 singletons. Analysis of the distribution of tenta- tive unique genes (TUGs) with the gene ontology for biological processes and molecular functions suggests that the 454 and Sanger EST assembly is broadly representative of the N. lugens transcriptome. The brown planthopper transcriptome was found to contain 31 TUGs encoding P450s, nine encoding glutathione S-transferases and 26 encoding car- boxyl/cholinesterases and many of these are putatively involved in the detoxification of xenobiotics. The Agilent eArray platform was used to construct an oligonucleotide mi- croarray populated with probes for ~ 19 000 unigene sequences, including all those known to encode detoxification enzymes. The genomic resources developed in this study will be useful to the community studying this crop pest and will help elucidate the molecular mechanism underlying insecticide resistance and planthopper adaptation to resistant rice cultivars.
基金supported jointly by the National Basic Research Program of China (Grant No. 2010CB126202)the Agro-Industry R&D Special Fund of China (Grant No. 200903051)Zhejiang Provincial Key Project on Agricultural Science of China (Grant No. 2011C12022)
文摘Anagrus nilaparvatae is the dominant egg parasitoid of rice planthoppers and plays an important role in biological control. Symbiotic bacteria can significantly influence the development, survival, reproduction and population differentiation of their hosts. To study the influence of temperature on symbiotic bacterial composition in the successive generations of A. nilaparvatae, A. nilaparvatae were raised under different constant temperatures of 22 °C, 25 °C, 28 °C, 31 °C and 34 °C. Polymerase chain reaction-denaturing gradient gel electrophoresis was used to investigate the diversity of symbiotic bacteria. Our results revealed that the endophytic bacteria of A. nilaparvatae were Pantoea sp., Pseudomonas sp. and some uncultured bacteria. The bacterial community composition in A. nilaparvatae significantly varied among different temperatures and generations, which might be partially caused by temperature, feeding behavior and the physical changes of hosts. However, the analysis of wsp gene showed that the Wolbachia in A. nilaparvatae belonged to group A, sub-group Mors and sub-group Dro. Sub-group Mors was absolutely dominant, and this Wolbachia composition remained stable in different temperatures and generations, except for the 3rd generation under 34 °C during which sub-group Dro became the dominant Wolbachia. The above results suggest that the continuous high temperature of 34 °C can influence the Wolbachia community composition in A. nilaparvatae.
基金supported by China National Natural Science Foundation(30360053)Science and Technology Department of Guangxi(Project No.Gui Ice Neng 05112001-1A1)Guangxi Key Labo ratory of Subtropical Bioresource Conservation and Utilization.