The preharvest internal browning of Nane plum fruit,with no visible effects on the appearance of the fruit,has become a serious problem in recent years in its production area in Guangdong Province,China.This study inv...The preharvest internal browning of Nane plum fruit,with no visible effects on the appearance of the fruit,has become a serious problem in recent years in its production area in Guangdong Province,China.This study investigated the effects of environmental factors,including temperature,on Nane plum internal browning.Plum orchards at different elevations with different incidences of internal browning were selected.Using fruits with different internal browning incidence levels,the internal browning mechanism was analyzed with transcriptome and metabolome analyses.The results revealed decreased internal browning at high altitudes.Shading treatment significantly reduced internal browning,whereas bagging and insect-proof net-covering treatments significantly increased internal browning.Because bagging and net coverings increase the local ambient temperature,the findings suggest that high temperature is an important factor influencing the internal browning of Nane plum.The metabolome experiments showed that with increased internal browning,the levels of phenolic hydroxyls such as catechol increased,with simultaneous increases in hydrogen peroxide content and oxidase activity.It can be speculated that the oxidation of phenolic hydroxyl substances is the main cause of the preharvest browning of Nane plum.Transcriptome analysis revealed the increased expression of calcium signaling-related and downstream effector genes and indicated an important role of calcium in internal browning,possibly due to its increased content in the fruit.Further,with increasingly serious internal browning,genes related to photosynthesis were down-regulated,while genes related to senescence were up-regulated,thus suggesting the up-regulation of the process of cell senescence during internal browning.In conclusion,heat stress should be eliminated to reduce preharvest internal browning in Nane plum.展开更多
番茄褐色皱果病毒Tomato brown rugose fruit virus(ToBRFV)于2014年首次在以色列发现,随后传播到欧洲、美洲以及亚洲等地。ToBRFV在番茄叶片上引起花叶,更重要的是在番茄果实上引起褐色皱缩斑,导致番茄完全失去商品价值,是番茄安全生...番茄褐色皱果病毒Tomato brown rugose fruit virus(ToBRFV)于2014年首次在以色列发现,随后传播到欧洲、美洲以及亚洲等地。ToBRFV在番茄叶片上引起花叶,更重要的是在番茄果实上引起褐色皱缩斑,导致番茄完全失去商品价值,是番茄安全生产的重大威胁。为遏制ToBRFV的传播,多个国家已经将该病毒列入检疫对象。2019年,我们在山东番茄上检测到该病毒。本文综述了ToBRFV发生与危害、寄主范围和症状、传播方式、基因组结构、检测方法,并提出了防治建议,希望有助于防范该病毒在我国的扩散。展开更多
Tomato brown rugose fruit virus(ToBRFV) is a novel tobamovirus firstly reported in 2015 and poses a severe threat to the tomato industry. So far, it has spread to 10 countries in America, Asia, and Europe. In 2019, To...Tomato brown rugose fruit virus(ToBRFV) is a novel tobamovirus firstly reported in 2015 and poses a severe threat to the tomato industry. So far, it has spread to 10 countries in America, Asia, and Europe. In 2019, ToBRFV was identified in Shandong Province(ToBRFV-SD), China. In this study, it was shown that ToBRFV-SD induced mild to severe mosaic and blistering on leaves, necrosis on sepals and pedicles, and deformation, yellow spots, and brown rugose necrotic lesions on fruits. ToBRFV-SD induced distinct symptoms on plants of tomato, Capsicum annumm, and Nicotiana benthamiana, and caused latent infection on plants of Solanum tuberosum, Solanum melongena, and N. tabacum cv. Zhongyan 102. All the 50 tomato cultivars tested were highly sensitive to ToBRFV-SD. The complete genomic sequence of ToBRFV-SD shared the highest nucleotide and amino acid identities with isolate IL from Israel. In the phylogenetic tree constructed with the complete genomic sequence, all the ToBRFV isolates were clustered together and formed a sister branch with tobacco mosaic virus(TMV). Furthermore, a quadruplex RT-PCR system was developed that could differentiate ToBRFV from other economically important viruses affecting tomatoes, such as TMV, tomato mosaic virus, and tomato spotted wilt virus. The findings of this study enhance our understanding of the biological and molecular characteristics of ToBRFV and provide an efficient and effective detection method for multiple infections, which is helpful in the management of ToBRFV.展开更多
The effect of postharvest heat treatment on browning of Huangguan pear was investigated. The results showed that heat treatment improved hardness and soluble solid content of stored pear fruit, postponed the improveme...The effect of postharvest heat treatment on browning of Huangguan pear was investigated. The results showed that heat treatment improved hardness and soluble solid content of stored pear fruit, postponed the improvement of MDA content and PPO activity in stored pear fruit and alleviated the reduction of SOD activity and the lowering of PG activity. To sum up, heat treatment reduces the occurrence of browning of stored pear fruit through the regulation of the changes in a series of physiological and biochemical indexes of fruit.展开更多
番茄褐色皱纹果病毒(tomato brown rugose fruit virus,ToBRFV)严重威胁番茄等茄科园艺作物的生产安全。本研究根据其外壳蛋白(coat protein,CP)基因及其同属病毒的差异序列,设计了特异性重组酶介导等温核酸扩增技术(recombinase-aided ...番茄褐色皱纹果病毒(tomato brown rugose fruit virus,ToBRFV)严重威胁番茄等茄科园艺作物的生产安全。本研究根据其外壳蛋白(coat protein,CP)基因及其同属病毒的差异序列,设计了特异性重组酶介导等温核酸扩增技术(recombinase-aided amplification,RAA)引物,并基于CRISPR/Cas12a的设计原则,设计了靶向RT-RAA扩增产物的CRISPR RNA(crRNA)。通过优化获得了检测信号最强的反应体系,其中报告基因FQ终浓度为600nmol/L、Cas12a和crRNA终浓度分别为200nmol/L和1000nmol/L,最终总反应时间仅为30 min。该方法可特异性检测ToBRFV,对携带ToBRFV的番茄样品RNA检测灵敏度为RT-PCR和RT-qPCR的10000和100倍,检测限为3.46fg/μL。阳性样品验证结果显示,本研究建立的RT-RAA-CRISPR/Cas12a检测技术可以在不同来源的辣椒、番茄侵染的植物叶片、果实及种子中检测到ToBRFV,表明该技术可用于番茄褐色皱纹果病毒的快速、灵敏的可视化检测。展开更多
基金the financial support from the Guangdong Provincial Agricultural Science and Technology Development and Resource Environmental Protection Management Project(Grant No.2022KJ116)the Guangdong Provincial Modern Agricultural Industrial Park Project of Lechang city Lingnan deciduous fruit(LCTJ2020078CS)+1 种基金Guangdong Provincial,Operation and maintenance project of germplasm resource nursery of deciduous fruit trees(Grant No.2022-NBH-00-010)Guangdong Province rural science and technology special correspondent project(Grant No.KTP-20210162).
文摘The preharvest internal browning of Nane plum fruit,with no visible effects on the appearance of the fruit,has become a serious problem in recent years in its production area in Guangdong Province,China.This study investigated the effects of environmental factors,including temperature,on Nane plum internal browning.Plum orchards at different elevations with different incidences of internal browning were selected.Using fruits with different internal browning incidence levels,the internal browning mechanism was analyzed with transcriptome and metabolome analyses.The results revealed decreased internal browning at high altitudes.Shading treatment significantly reduced internal browning,whereas bagging and insect-proof net-covering treatments significantly increased internal browning.Because bagging and net coverings increase the local ambient temperature,the findings suggest that high temperature is an important factor influencing the internal browning of Nane plum.The metabolome experiments showed that with increased internal browning,the levels of phenolic hydroxyls such as catechol increased,with simultaneous increases in hydrogen peroxide content and oxidase activity.It can be speculated that the oxidation of phenolic hydroxyl substances is the main cause of the preharvest browning of Nane plum.Transcriptome analysis revealed the increased expression of calcium signaling-related and downstream effector genes and indicated an important role of calcium in internal browning,possibly due to its increased content in the fruit.Further,with increasingly serious internal browning,genes related to photosynthesis were down-regulated,while genes related to senescence were up-regulated,thus suggesting the up-regulation of the process of cell senescence during internal browning.In conclusion,heat stress should be eliminated to reduce preharvest internal browning in Nane plum.
文摘番茄褐色皱果病毒Tomato brown rugose fruit virus(ToBRFV)于2014年首次在以色列发现,随后传播到欧洲、美洲以及亚洲等地。ToBRFV在番茄叶片上引起花叶,更重要的是在番茄果实上引起褐色皱缩斑,导致番茄完全失去商品价值,是番茄安全生产的重大威胁。为遏制ToBRFV的传播,多个国家已经将该病毒列入检疫对象。2019年,我们在山东番茄上检测到该病毒。本文综述了ToBRFV发生与危害、寄主范围和症状、传播方式、基因组结构、检测方法,并提出了防治建议,希望有助于防范该病毒在我国的扩散。
基金supported by the grants from the National Natural Science Foundation of China (31720103912 and 31801704)the ’Taishan Scholar’ Construction Project, China (TS201712023)。
文摘Tomato brown rugose fruit virus(ToBRFV) is a novel tobamovirus firstly reported in 2015 and poses a severe threat to the tomato industry. So far, it has spread to 10 countries in America, Asia, and Europe. In 2019, ToBRFV was identified in Shandong Province(ToBRFV-SD), China. In this study, it was shown that ToBRFV-SD induced mild to severe mosaic and blistering on leaves, necrosis on sepals and pedicles, and deformation, yellow spots, and brown rugose necrotic lesions on fruits. ToBRFV-SD induced distinct symptoms on plants of tomato, Capsicum annumm, and Nicotiana benthamiana, and caused latent infection on plants of Solanum tuberosum, Solanum melongena, and N. tabacum cv. Zhongyan 102. All the 50 tomato cultivars tested were highly sensitive to ToBRFV-SD. The complete genomic sequence of ToBRFV-SD shared the highest nucleotide and amino acid identities with isolate IL from Israel. In the phylogenetic tree constructed with the complete genomic sequence, all the ToBRFV isolates were clustered together and formed a sister branch with tobacco mosaic virus(TMV). Furthermore, a quadruplex RT-PCR system was developed that could differentiate ToBRFV from other economically important viruses affecting tomatoes, such as TMV, tomato mosaic virus, and tomato spotted wilt virus. The findings of this study enhance our understanding of the biological and molecular characteristics of ToBRFV and provide an efficient and effective detection method for multiple infections, which is helpful in the management of ToBRFV.
基金Supported by National Natural Science Foundation of Hebei Province(C2015301004)
文摘The effect of postharvest heat treatment on browning of Huangguan pear was investigated. The results showed that heat treatment improved hardness and soluble solid content of stored pear fruit, postponed the improvement of MDA content and PPO activity in stored pear fruit and alleviated the reduction of SOD activity and the lowering of PG activity. To sum up, heat treatment reduces the occurrence of browning of stored pear fruit through the regulation of the changes in a series of physiological and biochemical indexes of fruit.
文摘番茄褐色皱纹果病毒(tomato brown rugose fruit virus,ToBRFV)严重威胁番茄等茄科园艺作物的生产安全。本研究根据其外壳蛋白(coat protein,CP)基因及其同属病毒的差异序列,设计了特异性重组酶介导等温核酸扩增技术(recombinase-aided amplification,RAA)引物,并基于CRISPR/Cas12a的设计原则,设计了靶向RT-RAA扩增产物的CRISPR RNA(crRNA)。通过优化获得了检测信号最强的反应体系,其中报告基因FQ终浓度为600nmol/L、Cas12a和crRNA终浓度分别为200nmol/L和1000nmol/L,最终总反应时间仅为30 min。该方法可特异性检测ToBRFV,对携带ToBRFV的番茄样品RNA检测灵敏度为RT-PCR和RT-qPCR的10000和100倍,检测限为3.46fg/μL。阳性样品验证结果显示,本研究建立的RT-RAA-CRISPR/Cas12a检测技术可以在不同来源的辣椒、番茄侵染的植物叶片、果实及种子中检测到ToBRFV,表明该技术可用于番茄褐色皱纹果病毒的快速、灵敏的可视化检测。